Service Pharmaceutique, Groupement Hospitalier de Gériatrie, Hospices Civils de Lyon, Lyon, France.
AAPS J. 2013 Apr;15(2):415-26. doi: 10.1208/s12248-012-9431-9. Epub 2013 Jan 15.
We present a unified quantitative approach to predict the in vivo alteration in drug exposure caused by either cytochrome P450 (CYP) gene polymorphisms or CYP-mediated drug-drug interactions (DDI). An application to drugs metabolized by CYP2C19 is presented. The metrics used is the ratio of altered drug area under the curve (AUC) to the AUC in extensive metabolizers with no mutation or no interaction. Data from 42 pharmacokinetic studies performed in CYP2C19 genetic subgroups and 18 DDI studies were used to estimate model parameters and predicted AUC ratios by using Bayesian approach. Pharmacogenetic information was used to estimate a parameter of the model which was then used to predict DDI. The method adequately predicted the AUC ratios published in the literature, with mean errors of -0.15 and -0.62 and mean absolute errors of 0.62 and 1.05 for genotype and DDI data, respectively. The approach provides quantitative prediction of the effect of five genotype variants and 10 inhibitors on the exposure to 25 CYP2C19 substrates, including a number of unobserved cases. A quantitative approach for predicting the effect of gene polymorphisms and drug interactions on drug exposure has been successfully applied for CYP2C19 substrates. This study shows that pharmacogenetic information can be used to predict DDI. This may have important implications for the development of personalized medicine and drug development.
我们提出了一种统一的定量方法,用于预测细胞色素 P450(CYP)基因多态性或 CYP 介导的药物-药物相互作用(DDI)引起的体内药物暴露变化。我们展示了一种应用于由 CYP2C19 代谢的药物的方法。所使用的指标是突变或无相互作用的广泛代谢者的药物 AUC 比值的改变与 AUC 的比值。使用贝叶斯方法从 CYP2C19 遗传亚组中的 42 项药代动力学研究和 18 项 DDI 研究中收集的数据来估计模型参数和预测 AUC 比值。遗传药理学信息用于估计模型的一个参数,然后用于预测 DDI。该方法充分预测了文献中发表的 AUC 比值,基因型和 DDI 数据的平均误差分别为-0.15 和-0.62,平均绝对误差分别为 0.62 和 1.05。该方法提供了对五种基因型变异和十种抑制剂对 25 种 CYP2C19 底物暴露的影响的定量预测,包括一些未观察到的情况。成功地将一种用于预测基因多态性和药物相互作用对药物暴露影响的定量方法应用于 CYP2C19 底物。该研究表明,遗传药理学信息可用于预测 DDI。这对于个性化医学和药物开发可能具有重要意义。