Suppr超能文献

基于生理的药代动力学模型研究 CYP2C19 底物 BMS-823778,利用遗传药理学数据。

Physiologically-based pharmacokinetic modelling of a CYP2C19 substrate, BMS-823778, utilizing pharmacogenetic data.

机构信息

Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, 08543, USA.

Global Regulatory Safety & Biometrics, Bristol-Myers Squibb, Princeton, NJ, 08543, USA.

出版信息

Br J Clin Pharmacol. 2018 Jun;84(6):1335-1345. doi: 10.1111/bcp.13565. Epub 2018 Apr 10.

Abstract

AIMS

Previous studies demonstrated direct correlation between CYP2C19 genotype and BMS-823778 clearance in healthy volunteers. The objective of the present study was to develop a physiologically-based pharmacokinetic (PBPK) model for BMS-823778 and use the model to predict PK and drug-drug interaction (DDI) in virtual populations with multiple polymorphic genes.

METHODS

The PBPK model was built and verified using existing clinical data. The verified model was simulated to predict PK of BMS-823778 and significance of DDI with a strong CYP3A4 inhibitor in subjects with various CYP2C19 and UGT1A4 genotypes.

RESULTS

The verified PBPK model of BMS-823778 accurately recovered observed PK in different populations. In addition, the model was able to capture the exposure differences between subjects with different CYP2C19 genotypes. PK simulation indicated higher exposures of BMS-823778 in CYP2C19 poor metabolizers who were also devoid of UGT1A4 activity, compared to those with normal UGT1A4 functionality. Moderate DDI with itraconazole was predicted in subjects with wild-type CYP2C19 or UGT1A4. However, in subjects without CYP2C19 or UGT1A4 functionality, significant DDI was predicted when BMS-823778 was coadministered with itraconazole.

CONCLUSIONS

A PBPK model was developed using clinical data that accurately predicted human PK in different population with various CYP2C19 phenotypes. Simulations with the verified PBPK model indicated that UGT1A4 was probably an important clearance pathway in CYP2C19 poor metabolizers. DDI with itraconazole is likely to be dependent on the genotypes of CYP2C19 and UGT1A4.

摘要

目的

先前的研究表明,CYP2C19 基因型与健康志愿者中 BMS-823778 的清除率之间存在直接相关性。本研究的目的是建立 BMS-823778 的生理基于药代动力学(PBPK)模型,并使用该模型预测具有多种多态性基因的虚拟人群中的 PK 和药物相互作用(DDI)。

方法

使用现有的临床数据构建和验证 PBPK 模型。使用验证后的模型模拟 BMS-823778 的 PK,并预测在具有不同 CYP2C19 和 UGT1A4 基因型的受试者中与强 CYP3A4 抑制剂的 DDI 的显著性。

结果

BMS-823778 的验证 PBPK 模型准确地恢复了不同人群中的观察到的 PK。此外,该模型能够捕捉到具有不同 CYP2C19 基因型的受试者之间的暴露差异。PK 模拟表明,与具有正常 UGT1A4 功能的 CYP2C19 弱代谢者相比,CYP2C19 代谢不良者的 BMS-823778 暴露更高。在 CYP2C19 野生型或 UGT1A4 的受试者中,预测到与酮康唑的中度 DDI。然而,在没有 CYP2C19 或 UGT1A4 功能的受试者中,当 BMS-823778 与酮康唑同时给药时,预测到显著的 DDI。

结论

使用临床数据开发了 PBPK 模型,该模型能够准确预测不同人群中具有各种 CYP2C19 表型的人体 PK。使用验证后的 PBPK 模型进行的模拟表明,UGT1A4 可能是 CYP2C19 弱代谢者的重要清除途径。酮康唑的 DDI 可能取决于 CYP2C19 和 UGT1A4 的基因型。

相似文献

引用本文的文献

本文引用的文献

7
The Concise Guide to PHARMACOLOGY 2015/16: Enzymes.《2015/16药理学简明指南:酶》
Br J Pharmacol. 2015 Dec;172(24):6024-109. doi: 10.1111/bph.13354.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验