Suppr超能文献

定量预测药物相互作用和遗传多态性对细胞色素 P450 2C9 底物暴露的影响。

Quantitative prediction of the impact of drug interactions and genetic polymorphisms on cytochrome P450 2C9 substrate exposure.

机构信息

Université de Lyon, F-69000, Lyon, Université Lyon 1, CNRS UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Equipe Modélisation et Evaluation des Thérapeutiques, 7 rue Guillaume Paradin, 69007 Lyon, France.

出版信息

Clin Pharmacokinet. 2013 Mar;52(3):199-209. doi: 10.1007/s40262-013-0031-3.

Abstract

BACKGROUND AND OBJECTIVE

Cytochrome P450 (CYP) 2C9 is the most common CYP2C enzyme and makes up approximately onethird of total CYP protein content in the liver. It metabolises more than 100 drugs. The exposure of drugs mainly eliminated by CYP2C9 may be dramatically modified by drug-drug interactions (DDIs) and genetic variations. The objective of this study was to develop a modelling approach to predict the impact of genetic polymorphisms and DDIs on drug exposure in drugs metabolised by CYP2C9. We then developed dosing recommendations based on genotypes and compared them to current Epar/Vidal dosing guidelines.

METHODS

We created two models. The genetic model was designed to predict the impact of CYP2C9 polymorphisms on drug exposure. It links the area under the concentration-time curve (AUC) ratio (mutant to wild-type patients) to two parameters: the fractional contribution of CYP2C9 to oral clearance in vivo (i.e. CR or contribution ratio), and the fractional activity of the allele combination with respect to the homozygous wild type (i.e. FA or fraction of activity). Data were available for 77 couples (substrate, genotype). We used a three-step approach: (1) initial estimates of CRs and FAs were calculated using a first bibliographic dataset; (2) external validation of these estimates was then performed through the comparison between the AUC ratios predicted by the model and the observed values, using a second published dataset; and (3) refined estimates of CRs and FAs were obtained using Bayesian orthogonal regression involving the whole dataset and initial estimates of CRs and FAs. Posterior distributions of AUC ratios, CRs and FAs were estimated using Monte-Carlo Markov chain simulation. The drug interaction model was designed to predict the impact of DDIs on drug exposure. It links the AUC ratio (ratio of drug given in combination to drug given alone) to several parameters: the CR, the inhibition ratio (IR) of an inhibitor, and the increase in clearance (IC) due to an inducer. Data were available for 80 DDIs. IRs and ICs were calculated using the interaction model and an external validation was performed. Doses adjustments were calculated in order to obtain equal values for drug exposure in extensive and poor metabolisers and then compared to Epar/Vidal dosing guidelines.

RESULTS

CRs were assessed for 26 substrates, FAs for five genotype classes including CYP2C9*2 and 3 allelic variants, IRs for 27 inhibitors and ICs for two inducers. For the genetic model, the mean prediction error of AUC ratios was -0.01, while the mean prediction absolute error was 0.36. For the drug interaction model, the mean prediction error of AUC ratios was 0.01, while the mean prediction absolute error was 0.22. Of the 26 substrates and CYP2C92 and *3 variants investigated, 30 couples (substrate, genotype) lead to a dose adjustment, as opposed to only ten couples identified in the Epar/Vidal recommendations.

CONCLUSION

These models were already used for CYP2D6. They are accurate at predicting the impact of drug interactions and genetic polymorphisms on CYP2C9 substrate exposure. This approach will contribute to the development of personalized medicine, i.e. individualized drug therapy with specific dosing recommendations based on CYP genotype or drug associations.

摘要

背景和目的

细胞色素 P450(CYP)2C9 是最常见的 CYP2C 酶,约占肝脏中总 CYP 蛋白含量的三分之一。它代谢超过 100 种药物。药物的主要消除途径受 CYP2C9 代谢的药物的药物-药物相互作用(DDI)和遗传变异可能会显著改变。本研究的目的是建立一种模型方法来预测遗传多态性和 DDI 对 CYP2C9 代谢药物暴露的影响。然后,我们根据基因型制定了给药建议,并将其与当前的 Epar/Vidal 给药指南进行了比较。

方法

我们创建了两个模型。遗传模型旨在预测 CYP2C9 多态性对药物暴露的影响。它将浓度-时间曲线下面积(AUC)比值(突变型与野生型患者)与两个参数联系起来:CYP2C9 对体内口服清除率的贡献比(即 CR 或贡献比),以及与纯合野生型相比,等位基因组合的活性分数(即 FA 或活性分数)。有 77 对(底物,基因型)数据可用。我们使用了三步法:(1)使用第一个文献数据集计算 CRs 和 FAs 的初始估计值;(2)然后使用发表的第二个数据集,通过比较模型预测的 AUC 比值与观察值,对这些估计值进行外部验证;(3)使用包含整个数据集和初始 CRs 和 FAs 估计值的贝叶斯正交回归获得更精确的 CRs 和 FAs 估计值。使用蒙特卡罗马尔可夫链模拟法估计 AUC 比值、CRs 和 FAs 的后验分布。药物相互作用模型旨在预测 DDI 对药物暴露的影响。它将 AUC 比值(联合用药与单独用药的比值)与几个参数联系起来:CR、抑制剂的抑制比(IR)和诱导剂引起的清除率增加(IC)。有 80 个 DDI 数据。使用交互模型计算了 IRs 和 ICs,并进行了外部验证。为了使广泛代谢和不良代谢者的药物暴露相等,计算了剂量调整,并将其与 Epar/Vidal 给药指南进行了比较。

结果

对 26 种底物进行了 CRs 评估,对包括 CYP2C92 和3 等位基因变体在内的五种基因型进行了 FAs 评估,对 27 种抑制剂进行了 IRs 评估,对两种诱导剂进行了 ICs 评估。对于遗传模型,AUC 比值的平均预测误差为-0.01,而平均预测绝对误差为 0.36。对于药物相互作用模型,AUC 比值的平均预测误差为 0.01,而平均预测绝对误差为 0.22。在所研究的 26 种底物和 CYP2C92 和3 变体中,有 30 对(底物,基因型)需要调整剂量,而 Epar/Vidal 建议中只确定了 10 对。

结论

这些模型已经用于 CYP2D6。它们可以准确预测药物相互作用和遗传多态性对 CYP2C9 底物暴露的影响。这种方法将有助于个性化医学的发展,即根据 CYP 基因型或药物关联制定个体化药物治疗和特定剂量建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验