National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, Massachusetts, USA.
Genet Epidemiol. 2013 Apr;37(3):239-47. doi: 10.1002/gepi.21706. Epub 2013 Jan 14.
In humans, mitochondria contain their own DNA (mtDNA) that is inherited exclusively from the mother. The mitochondrial genome encodes 13 polypeptides that are components of oxidative phosphorylation to produce energy. Any disruption in these genes might interfere with energy production and thus contribute to metabolic derangement. Mitochondria also regulate several important cellular activities including cell death and calcium homeostasis. Aided by sharply declining costs of high-density genotyping, hundreds of mitochondrial variants will soon be available in several cohorts with pedigree structures. Association testing of mitochondrial variants with disease traits using pedigree data raises unique challenges because of the difficulty in separating the effects of nuclear and mitochondrial genomes, which display different modes of inheritance. Failing to correctly account for these effects might decrease power or inflate type I error in association tests. In this report, we sought to identify the best strategy for association testing of mitochondrial variants when genotype and phenotype data are available in pedigrees. We proposed several strategies to account for polygenic effects of the nuclear and mitochondrial genomes and we performed extensive simulation studies to evaluate type I error and power of these strategies. In addition, we proposed two permutation tests to obtain empirical P values for these strategies. Furthermore, we applied two of the analytical strategies to association analysis of 196 mitochondrial variants with blood pressure and fasting blood glucose in the pedigree rich, Framingham Heart Study. Finally, we discussed strategies for study design, genotyping, and data cleaning in association testing of mtDNA in pedigrees.
在人类中,线粒体含有其自身的 DNA(mtDNA),这些 DNA 仅由母亲遗传。线粒体基因组编码 13 种多肽,这些多肽是氧化磷酸化产生能量的组成部分。这些基因的任何中断都可能干扰能量的产生,从而导致代谢紊乱。线粒体还调节着几种重要的细胞活动,包括细胞死亡和钙稳态。由于高密度基因分型成本的急剧下降,几个具有谱系结构的队列中很快就会有数百个线粒体变体。使用谱系数据对线粒体变体与疾病特征进行关联测试会带来独特的挑战,因为核和线粒体基因组的作用很难分离,这两种基因组的遗传模式不同。如果不能正确考虑这些影响,关联测试的效力可能会降低或导致Ⅰ型错误率增加。在本报告中,我们试图确定在谱系中可获得基因型和表型数据的情况下,对线粒体变体进行关联测试的最佳策略。我们提出了几种策略来解释核和线粒体基因组的多基因效应,并进行了广泛的模拟研究来评估这些策略的Ⅰ型错误率和效力。此外,我们还提出了两种置换检验来获得这些策略的经验 P 值。此外,我们将两种分析策略应用于对 Framingham 心脏研究中 196 个线粒体变体与血压和空腹血糖的关联分析。最后,我们讨论了在谱系中进行 mtDNA 关联测试的研究设计、基因分型和数据清理策略。