Suppr超能文献

在有相关个体的样本中进行稳健的罕见变异关联测试,用于定量性状。

Robust rare variant association testing for quantitative traits in samples with related individuals.

机构信息

Department of Statistics, University of Chicago, Chicago, Illinois, United States of America.

出版信息

Genet Epidemiol. 2014 Jan;38(1):10-20. doi: 10.1002/gepi.21775. Epub 2013 Nov 18.

Abstract

The recent development of high-throughput sequencing technologies calls for powerful statistical tests to detect rare genetic variants associated with complex human traits. Sampling related individuals in sequencing studies offers advantages over sampling unrelated individuals only, including improved protection against sequencing error, the ability to use imputation to make more efficient use of sequence data, and the possibility of power boost due to more observed copies of extremely rare alleles among relatives. With related individuals, familial correlation needs to be accounted for to ensure correct control over type I error and to improve power. Recognizing the limitations of existing rare-variant association tests for family data, we propose MONSTER (Minimum P-value Optimized Nuisance parameter Score Test Extended to Relatives), a robust rare-variant association test, which generalizes the SKAT-O method for independent samples. MONSTER uses a mixed effects model that accounts for covariates and additive polygenic effects. To obtain a powerful test, MONSTER adaptively adjusts to the unknown configuration of effects of rare-variant sites. MONSTER also offers an analytical way of assessing P-values, which is desirable because permutation is not straightforward to conduct in related samples. In simulation studies, we demonstrate that MONSTER effectively accounts for family structure, is computationally efficient and compares very favorably, in terms of power, to previously proposed tests that allow related individuals. We apply MONSTER to an analysis of high-density lipoprotein cholesterol in the Framingham Heart Study, where we are able to replicate association with three genes.

摘要

高通量测序技术的最新发展需要强大的统计检验来检测与复杂人类特征相关的罕见遗传变异。在测序研究中对相关个体进行采样比仅对无关个体进行采样具有优势,包括更好地防止测序错误,能够使用插补来更有效地利用序列数据,以及由于亲属中极罕见等位基因的观察副本更多而可能增加功效。对于相关个体,需要考虑家族相关性,以确保正确控制 I 型错误并提高功效。认识到现有针对家族数据的罕见变异关联检验的局限性,我们提出了 MONSTER(最小 P 值优化的杂余参数评分检验扩展到亲属),这是一种强大的罕见变异关联检验方法,它将 SKAT-O 方法扩展到独立样本。MONSTER 使用混合效应模型来考虑协变量和加性多基因效应。为了获得强大的检验,MONSTER 自适应地调整罕见变异位点效应的未知配置。MONSTER 还提供了一种分析 P 值的方法,这是可取的,因为在相关样本中,置换不容易进行。在模拟研究中,我们证明了 MONSTER 有效地考虑了家族结构,计算效率高,并且在功效方面与允许相关个体的先前提出的检验方法相比非常有利。我们将 MONSTER 应用于弗雷明汉心脏研究中的高密度脂蛋白胆固醇分析,我们能够复制与三个基因的关联。

相似文献

引用本文的文献

本文引用的文献

5
SNP set association analysis for familial data.家族数据的单核苷酸多态性集合关联分析。
Genet Epidemiol. 2012 Dec;36(8):797-810. doi: 10.1002/gepi.21676. Epub 2012 Sep 11.
6
Optimal tests for rare variant effects in sequencing association studies.测序关联研究中罕见变异效应的最优检验。
Biostatistics. 2012 Sep;13(4):762-75. doi: 10.1093/biostatistics/kxs014. Epub 2012 Jun 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验