文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用 UKF 技术的 DVL 辅助 SINS 运动对准新方案。

A novel scheme for DVL-aided SINS in-motion alignment using UKF techniques.

机构信息

College of Mechatronics and Automation, National University of Defense Technology, Changsha 410073, China.

出版信息

Sensors (Basel). 2013 Jan 15;13(1):1046-63. doi: 10.3390/s130101046.


DOI:10.3390/s130101046
PMID:23322105
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3574720/
Abstract

In-motion alignment of Strapdown Inertial Navigation Systems (SINS) without any geodetic-frame observations is one of the toughest challenges for Autonomous Underwater Vehicles (AUV). This paper presents a novel scheme for Doppler Velocity Log (DVL) aided SINS alignment using Unscented Kalman Filter (UKF) which allows large initial misalignments. With the proposed mechanism, a nonlinear SINS error model is presented and the measurement model is derived under the assumption that large misalignments may exist. Since a priori knowledge of the measurement noise covariance is of great importance to robustness of the UKF, the covariance-matching methods widely used in the Adaptive KF (AKF) are extended for use in Adaptive UKF (AUKF). Experimental results show that the proposed DVL-aided alignment model is effective with any initial heading errors. The performances of the adaptive filtering methods are evaluated with regards to their parameter estimation stability. Furthermore, it is clearly shown that the measurement noise covariance can be estimated reliably by the adaptive UKF methods and hence improve the performance of the alignment.

摘要

捷联惯性导航系统(SINS)在无任何大地坐标系观测的情况下进行运动中对准是自主水下机器人(AUV)面临的最艰巨挑战之一。本文提出了一种基于无迹卡尔曼滤波器(UKF)的多普勒速度计(DVL)辅助 SINS 对准的新方案,该方案允许存在较大的初始对准误差。在所提出的机制中,提出了一种非线性 SINS 误差模型,并在存在较大对准误差的假设下推导出了测量模型。由于先验测量噪声协方差知识对于 UKF 的鲁棒性非常重要,因此将自适应卡尔曼滤波器(AKF)中广泛使用的协方差匹配方法扩展到自适应 UKF(AUKF)中。实验结果表明,所提出的 DVL 辅助对准模型在存在任何初始航向误差的情况下均有效。针对参数估计稳定性,对自适应滤波方法的性能进行了评估。此外,清楚地表明,自适应 UKF 方法可以可靠地估计测量噪声协方差,从而提高对准性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cdd/3574720/827aa9bae9a2/sensors-13-01046f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cdd/3574720/21e77ce7bfb3/sensors-13-01046f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cdd/3574720/002ab3459800/sensors-13-01046f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cdd/3574720/d1eec0e2fc9d/sensors-13-01046f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cdd/3574720/d1ff01fe38d2/sensors-13-01046f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cdd/3574720/befc768e0975/sensors-13-01046f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cdd/3574720/2cb0ac67b7c4/sensors-13-01046f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cdd/3574720/35e62ab79b7a/sensors-13-01046f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cdd/3574720/43f8b614c861/sensors-13-01046f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cdd/3574720/15830320b454/sensors-13-01046f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cdd/3574720/36d43289fd1d/sensors-13-01046f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cdd/3574720/a939133c8e0d/sensors-13-01046f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cdd/3574720/a7472f6a29e0/sensors-13-01046f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cdd/3574720/737ab7972ae9/sensors-13-01046f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cdd/3574720/827aa9bae9a2/sensors-13-01046f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cdd/3574720/21e77ce7bfb3/sensors-13-01046f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cdd/3574720/002ab3459800/sensors-13-01046f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cdd/3574720/d1eec0e2fc9d/sensors-13-01046f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cdd/3574720/d1ff01fe38d2/sensors-13-01046f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cdd/3574720/befc768e0975/sensors-13-01046f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cdd/3574720/2cb0ac67b7c4/sensors-13-01046f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cdd/3574720/35e62ab79b7a/sensors-13-01046f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cdd/3574720/43f8b614c861/sensors-13-01046f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cdd/3574720/15830320b454/sensors-13-01046f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cdd/3574720/36d43289fd1d/sensors-13-01046f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cdd/3574720/a939133c8e0d/sensors-13-01046f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cdd/3574720/a7472f6a29e0/sensors-13-01046f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cdd/3574720/737ab7972ae9/sensors-13-01046f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cdd/3574720/827aa9bae9a2/sensors-13-01046f14.jpg

相似文献

[1]
A novel scheme for DVL-aided SINS in-motion alignment using UKF techniques.

Sensors (Basel). 2013-1-15

[2]
Robust adaptive unscented Kalman filter and its application in initial alignment for body frame velocity aided strapdown inertial navigation system.

Rev Sci Instrum. 2018-11

[3]
A Polar Robust Kalman Filter Algorithm for DVL-Aided SINSs Based on the Ellipsoidal Earth Model.

Sensors (Basel). 2022-10-17

[4]
Adaptive Federated IMM Filter for AUV Integrated Navigation Systems.

Sensors (Basel). 2020-11-28

[5]
A virtual velocity-based integrated navigation method for strapdown inertial navigation system and Doppler velocity log coupled with unknown current.

Rev Sci Instrum. 2022-6-1

[6]
A Novel Grid SINS/DVL Integrated Navigation Algorithm for Marine Application.

Sensors (Basel). 2018-1-26

[7]
Adaptive Robust Unscented Kalman Filter for AUV Acoustic Navigation.

Sensors (Basel). 2019-12-20

[8]
In-motion coarse alignment method for SINS/DVL with the attitude dynamics.

ISA Trans. 2020-10

[9]
An Improved ACKF/KF Initial Alignment Method for Odometer-Aided Strapdown Inertial Navigation System.

Sensors (Basel). 2018-11-12

[10]
A Vision Aided Initial Alignment Method of Strapdown Inertial Navigation Systems in Polar Regions.

Sensors (Basel). 2022-6-21

引用本文的文献

[1]
A New Robust Adaptive Filter Aided by Machine Learning Method for SINS/DVL Integrated Navigation System.

Sensors (Basel). 2022-5-17

[2]
An Alignment Method Based on KF-ASMUKF Hybrid Filtering for Ship's SINS under Mooring Conditions.

Sensors (Basel). 2021-10-26

[3]
MLCA-A Machine Learning Framework for INS Coarse Alignment.

Sensors (Basel). 2020-12-5

[4]
Underwater Localization System Combining iUSBL with Dynamic SBL in ¡VAMOS! Trials.

Sensors (Basel). 2020-8-20

[5]
An Improved Adaptive Compensation H∞ Filtering Method for the SINS' Transfer Alignment Under a Complex Dynamic Environment.

Sensors (Basel). 2019-1-19

[6]
An Improved ACKF/KF Initial Alignment Method for Odometer-Aided Strapdown Inertial Navigation System.

Sensors (Basel). 2018-11-12

[7]
Polar Transversal Initial Alignment Algorithm for UUV with a Large Misalignment Angle.

Sensors (Basel). 2018-9-25

[8]
Square-Root Unscented Information Filter and Its Application in SINS/DVL Integrated Navigation.

Sensors (Basel). 2018-6-28

[9]
A Polar Initial Alignment Algorithm for Unmanned Underwater Vehicles.

Sensors (Basel). 2017-11-23

[10]
Polar Grid Navigation Algorithm for Unmanned Underwater Vehicles.

Sensors (Basel). 2017-7-9

本文引用的文献

[1]
Benefits of combined GPS/GLONASS with low-cost MEMS IMUs for vehicular urban navigation.

Sensors (Basel). 2012-4-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索