National University of Defense Technology, Deya Road No. 109, Kaifu District, Changsha 410073, China.
Sensors (Basel). 2018 Jun 28;18(7):2069. doi: 10.3390/s18072069.
To address the problem of low accuracy for the regular filter algorithm in SINS/DVL integrated navigation, a square-root unscented information filter (SR-UIF) is presented in this paper. The proposed method: (1) adopts the state probability approximation instead of the Taylor model linearization in EKF algorithm to improve the accuracy of filtering estimation; (2) selects the most suitable parameter form at each filtering stage to simply the calculation complexity; (3) transforms the square root to ensure the symmetry and positive definiteness of the covariance matrix or information matrix, and then to enhance the stability of the filter. The simulation results indicate that the estimation accuracy of SR-UIF is higher than that of EKF, and similar to UKF; meanwhile the computational complexity of SR-UIF is lower than that of UKF.
为了解决 SINS/DVL 组合导航中常规滤波器算法精度低的问题,本文提出了一种平方根无迹信息滤波器(SR-UIF)。该方法:(1)采用状态概率逼近代替 EKF 算法中的泰勒模型线性化,以提高滤波估计的精度;(2)在每个滤波阶段选择最合适的参数形式,以简化计算复杂度;(3)对平方根进行变换,以保证协方差矩阵或信息矩阵的对称性和正定性,从而提高滤波器的稳定性。仿真结果表明,SR-UIF 的估计精度高于 EKF,与 UKF 相当;同时,SR-UIF 的计算复杂度低于 UKF。