Suppr超能文献

燃烧生成颗粒诱导肺损伤的新兴机制靶点。

Emerging mechanistic targets in lung injury induced by combustion-generated particles.

机构信息

Altria Client Services Inc., Richmond, Virginia, USA.

出版信息

Toxicol Sci. 2013 Apr;132(2):253-67. doi: 10.1093/toxsci/kft001. Epub 2013 Jan 14.

Abstract

The mechanism for biological effect following exposure to combustion-generated particles is incompletely defined. The identification of pathways regulating the acute toxicological effects of these particles provides specific targets for therapeutic manipulation in an attempt to impact disease following exposures. Transient receptor potential (TRP) cation channels were identified as "particle sensors" in that their activation was coupled with the initiation of protective responses limiting airway deposition and inflammatory responses, which promote degradation and clearance of the particles. TRPA1, V1, V4, and M8 have a capacity to mediate adverse effects after exposure to combustion-generated particulate matter (PM); relative contributions of each depend upon particle composition, dose, and deposition. Exposure of human bronchial epithelial cells to an organic extract of diesel exhaust particle was followed by TRPV4 mediating Ca(++) influx, increased RAS expression, mitogen-activated protein kinase signaling, and matrix metalloproteinase-1 activation. These novel pathways of biological effect can be targeted by compounds that specifically inhibit critical signaling reactions. In addition to TRPs and calcium biochemistry, humic-like substances (HLS) and cell/tissue iron equilibrium were identified as potential mechanistic targets in lung injury after particle exposure. In respiratory epithelial cells, iron sequestration by HLS in wood smoke particle (WSP) was associated with oxidant generation, cell signaling, transcription factor activation, and release of inflammatory mediators. Similar to WSP, cytotoxic insoluble nanosized spherical particles composed of HLS were isolated from cigarette smoke condensate. Therapies that promote bioelimination of HLS and prevent the disruption of iron homeostasis could function to reduce the harmful effects of combustion-generated PM exposure.

摘要

暴露于燃烧生成的颗粒后产生生物效应的机制尚未完全阐明。鉴定调控这些颗粒急性毒理学效应的途径为治疗干预提供了特定靶点,以期在暴露后影响疾病的发生。瞬时受体电位 (TRP) 阳离子通道被鉴定为“颗粒传感器”,因为它们的激活与启动保护性反应相关联,从而限制了气道沉积和炎症反应,促进了颗粒的降解和清除。TRPA1、V1、V4 和 M8 具有在暴露于燃烧生成的颗粒物 (PM) 后介导不良反应的能力;每种物质的相对贡献取决于颗粒成分、剂量和沉积。将人支气管上皮细胞暴露于柴油机排气颗粒的有机提取物后,TRPV4 介导 Ca(++)内流、增加 RAS 表达、有丝分裂原激活蛋白激酶信号转导和基质金属蛋白酶-1 激活。这些新的生物效应途径可以通过特异性抑制关键信号反应的化合物来靶向。除了 TRP 和钙生物化学外,腐殖质样物质 (HLS) 和细胞/组织铁平衡也被确定为颗粒暴露后肺损伤的潜在机制靶点。在呼吸上皮细胞中,HLS 对木烟颗粒 (WSP) 中铁的螯合与氧化应激生成、细胞信号转导、转录因子激活和炎症介质释放有关。与 WSP 类似,从香烟烟雾冷凝物中分离出由 HLS 组成的细胞毒性不溶性纳米球形颗粒。促进 HLS 生物消除并防止铁稳态破坏的治疗方法可能有助于减少燃烧生成的 PM 暴露的有害影响。

相似文献

3
Wood Smoke Particle Sequesters Cell Iron to Impact a Biological Effect.木烟颗粒螯合细胞铁以影响生物学效应。
Chem Res Toxicol. 2015 Nov 16;28(11):2104-11. doi: 10.1021/acs.chemrestox.5b00270. Epub 2015 Oct 22.
5
Effects of fuel components and combustion particle physicochemical properties on toxicological responses of lung cells.燃料成分及燃烧颗粒物理化性质对肺细胞毒理学反应的影响
J Environ Sci Health A Tox Hazard Subst Environ Eng. 2018 Mar 21;53(4):295-309. doi: 10.1080/10934529.2017.1400793. Epub 2017 Dec 11.

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验