Suppr超能文献

在一项整群随机对照试验中模拟不纯簇。

Modeling impure clusters in a cluster randomized controlled trial.

机构信息

School of Nursing, Medicine and Public Health, Clinical Science Center, University of Wisconsin-Madison, H6/273, 600 Highland Avenue, Madison, WI 53792-2455.

出版信息

Res Nurs Health. 2013 Apr;36(2):216-23. doi: 10.1002/nur.21523. Epub 2013 Jan 15.

Abstract

Cluster randomized controlled trials (CRCT) can be susceptible to a wide range of methodological problems. Many of these problems are not commonly recognized by researchers. This article is focused on one potential problem, the issue of impure clustering (multiple patient membership) within the CRCT structures and how it can lead to possible misunderstanding and bias in the results of the trial. A solution to this problem is presented using a multiple membership random effects model (MMREM). A simulated example of a three-level CRCT is presented and modeled with and without multiple patient membership data. Results indicate underestimation of higher level variances, and overestimation of lower-level variances, while also indicating underestimation of level predictors where the multiple membership occurs.

摘要

群组随机对照试验(CRCT)可能容易受到多种方法学问题的影响。其中许多问题并未得到研究人员的普遍认识。本文主要关注一个潜在问题,即 CRCT 结构中存在的不纯聚类(多个患者成员)问题,以及它如何导致试验结果可能产生误解和偏差。本文使用多成员随机效应模型(MMREM)提出了解决该问题的方法。本文还提出了一个三级 CRCT 的模拟示例,并分别对包含和不包含多成员数据的情况进行了建模。结果表明,当存在多成员数据时,会低估高层方差,高估低层方差,同时也会低估发生多成员数据的层次预测因子。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验