Bohrer Anne-Sophie, Kopriva Stanislav, Takahashi Hideki
Department of Biochemistry and Molecular Biology, Michigan State University East Lansing, MI, USA.
Botanical Institute and Cluster of Excellence on Plant Sciences, University of Cologne, Cologne Germany.
Front Plant Sci. 2015 Jan 22;5:751. doi: 10.3389/fpls.2014.00751. eCollection 2014.
Plants assimilate sulfate from the environment to synthesize biologically active sulfur-containing compounds required for growth and cellular development. The primary steps of sulfur metabolism involve sequential enzymatic reactions synthesizing adenosine 5'-phosphosulfate (APS) and 3'-phosphoadenosine 5'-phosphosulfate (PAPS). Recent finding suggests that an adenosine nucleotide transport system facilitating the exchange of PAPS and 3'-phosphoadenosine 5'-phosphate across the plastid envelope is essential for establishing an intimate connection between the plastidic and cytosolic sulfate assimilation pathways in plants. Subcellular partitioning and integration of metabolic pathways provide focal points for investigating metabolic flux regulations. This perspective article presents an integrative view of sulfur metabolic flux control mechanisms with an emphasis on subcellular partitioning of APS/PAPS biosynthetic pathways in Arabidopsis thaliana.
植物从环境中吸收硫酸盐,以合成生长和细胞发育所需的具有生物活性的含硫化合物。硫代谢的主要步骤涉及一系列酶促反应,合成腺苷5'-磷酸硫酸酯(APS)和3'-磷酸腺苷5'-磷酸硫酸酯(PAPS)。最近的研究发现,一种促进PAPS和3'-磷酸腺苷5'-磷酸在质体包膜间交换的腺苷核苷酸转运系统,对于在植物中建立质体和胞质硫酸盐同化途径之间的紧密联系至关重要。代谢途径的亚细胞分隔和整合为研究代谢通量调控提供了重点。这篇观点文章提出了硫代谢通量控制机制的综合观点,重点是拟南芥中APS/PAPS生物合成途径的亚细胞分隔。