Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
Nano Lett. 2013 Feb 13;13(2):709-15. doi: 10.1021/nl304379k. Epub 2013 Jan 17.
Lithium-ion batteries have revolutionized portable electronics and will be a key to electrifying transport vehicles and delivering renewable electricity. Amorphous silicon (a-Si) is being intensively studied as a high-capacity anode material for next-generation lithium-ion batteries. Its lithiation has been widely thought to occur through a single-phase mechanism with gentle Li profiles, thus offering a significant potential for mitigating pulverization and capacity fade. Here, we discover a surprising two-phase process of electrochemical lithiation in a-Si by using in situ transmission electron microscopy. The lithiation occurs by the movement of a sharp phase boundary between the a-Si reactant and an amorphous Li(x)Si (a-Li(x)Si, x ~ 2.5) product. Such a striking amorphous-amorphous interface exists until the remaining a-Si is consumed. Then a second step of lithiation sets in without a visible interface, resulting in the final product of a-Li(x)Si (x ~ 3.75). We show that the two-phase lithiation can be the fundamental mechanism underpinning the anomalous morphological change of microfabricated a-Si electrodes, i.e., from a disk shape to a dome shape. Our results represent a significant step toward the understanding of the electrochemically driven reaction and degradation in amorphous materials, which is critical to the development of microstructurally stable electrodes for high-performance lithium-ion batteries.
锂离子电池彻底改变了便携式电子设备,将成为实现电动交通工具和可再生能源供电的关键。非晶硅(a-Si)作为下一代锂离子电池的高容量阳极材料受到了广泛关注。人们普遍认为,其锂化过程通过单相机制进行,锂的分布较为平缓,从而为减轻粉碎和容量衰减提供了巨大的潜力。在此,我们通过原位透射电子显微镜发现了 a-Si 电化学锂化过程中的一个惊人的两相过程。锂化是通过 a-Si 反应物和非晶态 Li(x)Si(a-Li(x)Si,x2.5)产物之间的尖锐相界的移动来实现的。这种明显的非晶态-非晶态界面一直存在,直到剩余的 a-Si 被消耗完。然后,在没有可见界面的情况下,第二阶段的锂化开始,最终产物为 a-Li(x)Si(x3.75)。我们表明,两相锂化可能是微加工 a-Si 电极异常形态变化的基本机制,即从盘形变为穹顶形。我们的研究结果代表了在理解电化学驱动反应和非晶态材料降解方面的重要一步,这对于开发用于高性能锂离子电池的微观结构稳定电极至关重要。