Takeda Seiji, Yoshida Hideto
Nanoscience and Nanotechnology Center, Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, Japan.
Microscopy (Oxf). 2013 Feb;62(1):193-203. doi: 10.1093/jmicro/dfs096. Epub 2013 Jan 16.
We have compiled our recent in-situ quantitative environmental transmission electron microscopy (ETEM) studies on typical gold nanoparticulate catalysts for the low-temperature oxidation of CO to describe the issues surrounding the application of ETEM, with a special regard to catalyst chemistry. Thanks to the recent development of high-resolution environmental transmission electron microscopes that can work robustly to accumulate observation data in controlled environments, we can deal with the electron irradiation effects and heterogeneity of real catalysts. We established a structural evolution diagram that summarizes the structure of catalysts under electron irradiation as a function of the electron current density ϕ and the electron dose, D. By extrapolating to ϕ = 0, D = 0, we could deduce the intrinsic catalysis structure (without electron irradiation) in various environments, including reaction environments. By numerically and statistically analyzing a substantial number of ETEM images of gold nanoparticles, we established a morphology phase diagram that summarizes how the majority of gold nanoparticles change their morphology systematically as a function of the partial pressures of CO and O(2). Similar diagrams will be helpful in elucidating the phenomena that directly correlate with the catalytic activity determined from ETEM observations. Using these quantitative analyses, we could analyze Cs-corrected ETEM images of the catalysts. The surfaces of gold nanoparticles were structurally reconstructed under reaction conditions, via interactions with CO molecules. CO molecules were observed on the surfaces of catalysts under reaction conditions using high-resolution ETEM. Finally, we discuss the potential of environmental transmission electron microscopy for quantitative in-situ microscopy at the atomic scale.
我们汇总了近期对用于CO低温氧化的典型金纳米颗粒催化剂进行的原位定量环境透射电子显微镜(ETEM)研究,以阐述围绕ETEM应用的相关问题,特别关注催化剂化学。得益于高分辨率环境透射电子显微镜的最新发展,其能够在可控环境中稳定工作以积累观测数据,我们得以处理真实催化剂的电子辐照效应和不均匀性。我们建立了一个结构演化图,该图总结了电子辐照下催化剂结构随电子电流密度ϕ和电子剂量D的变化情况。通过外推至ϕ = 0、D = 0,我们可以推断出在包括反应环境在内的各种环境中(无电子辐照时)的本征催化结构。通过对大量金纳米颗粒的ETEM图像进行数值和统计分析,我们建立了一个形貌相图,该图总结了大多数金纳米颗粒如何随CO和O₂的分压系统性地改变其形貌。类似的相图将有助于阐明与ETEM观测确定的催化活性直接相关的现象。利用这些定量分析,我们能够分析催化剂的Cs校正ETEM图像。在反应条件下,金纳米颗粒的表面通过与CO分子的相互作用发生了结构重构。在反应条件下,使用高分辨率ETEM在催化剂表面观察到了CO分子。最后,我们讨论了环境透射电子显微镜在原子尺度上进行定量原位显微镜观察的潜力。