Takeda Seiji, Kuwauchi Yasufumi, Yoshida Hideto
Nanoscience and Nanotechnology Center, Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.
Nanoscience and Nanotechnology Center, Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.
Ultramicroscopy. 2015 Apr;151:178-190. doi: 10.1016/j.ultramic.2014.11.017. Epub 2014 Nov 28.
Atomic resolution has been obtained using environmental transmission electron microscopy (ETEM) by installing a spherical aberration corrector (Cs-corrector) on the objective lens. Simultaneously, the technology for controlling the environment around a specimen in ETEM has advanced significantly in the past decade. Quantification methodology has recently been established for deriving relevant experimental data in catalyst materials from substantial and systematic ETEM observation at the atomic scale. With this background, this paper summarizes aspects of the evolutional microscopy technique: necessary conditions for atomic resolution in ETEM; reduction of the scattering of electrons by the medium surrounding a specimen; and an environmental cell for structural imaging of a crystalline specimen. The high spatial resolution of a Cs-corrected ETEM is demonstrated for different observation conditions. After statistical analysis combined with numerical image analysis of ETEM data is briefly described, the recent applications of the Cs-corrected ETEM to catalyst materials are reviewed. For gold nanoparticulate catalysts, the structural information on the reaction sites and adsorption sites are deduced. For Pt nanoparticulate catalysts, ETEM studies elucidate the correlation between the catalytic activity and the morphology of the nanoparticles. These studies also reveal oxidation and reduction on the topmost Pt surface layer at the atomic scale. Finally, current issues and the future perspectives of Cs-corrected ETEM are summarized, including the reproducibility of ETEM observation data, the control of environments, the critical evaluation of electron irradiation effects, the full implementation of transmission electron microscopy technology in ETEM, and the safety issues for an ETEM laboratory.
通过在物镜上安装球差校正器(Cs 校正器),利用环境透射电子显微镜(ETEM)已获得原子分辨率。同时,在过去十年中,ETEM 中用于控制样品周围环境的技术有了显著进步。最近已经建立了定量方法,用于从原子尺度上大量且系统的 ETEM 观察中获取催化剂材料的相关实验数据。在此背景下,本文总结了这一不断发展的显微镜技术的几个方面:ETEM 中实现原子分辨率的必要条件;减少样品周围介质对电子的散射;以及用于晶体样品结构成像的环境室。展示了 Cs 校正后的 ETEM 在不同观察条件下的高空间分辨率。在简要描述了结合 ETEM 数据的数值图像分析进行的统计分析之后,回顾了 Cs 校正后的 ETEM 在催化剂材料方面的最新应用。对于金纳米颗粒催化剂,推导了反应位点和吸附位点的结构信息。对于铂纳米颗粒催化剂,ETEM 研究阐明了催化活性与纳米颗粒形态之间的相关性。这些研究还在原子尺度上揭示了最顶层铂表面层的氧化和还原情况。最后,总结了 Cs 校正后的 ETEM 当前存在的问题和未来展望,包括 ETEM 观察数据的可重复性、环境控制、电子辐照效应的批判性评估、ETEM 中透射电子显微镜技术的全面应用以及 ETEM 实验室的安全问题。