Suppr超能文献

基于体突变谱的卵巢高级别浆液性癌预测模型。

Predictive modeling using a somatic mutational profile in ovarian high grade serous carcinoma.

机构信息

Samsung Cancer Research Institute, Seoul, Korea.

出版信息

PLoS One. 2013;8(1):e54089. doi: 10.1371/journal.pone.0054089. Epub 2013 Jan 10.

Abstract

PURPOSE

Recent high-throughput sequencing technology has identified numerous somatic mutations across the whole exome in a variety of cancers. In this study, we generate a predictive model employing the whole exome somatic mutational profile of ovarian high-grade serous carcinomas (Ov-HGSCs) obtained from The Cancer Genome Atlas data portal.

METHODS

A total of 311 patients were included for modeling overall survival (OS) and 259 patients were included for modeling progression free survival (PFS) in an analysis of 509 genes. The model was validated with complete leave-one-out cross-validation involving re-selecting genes for each iteration of the cross-validation procedure. Cross-validated Kaplan-Meier curves were generated. Cross-validated time dependent receiver operating characteristic (ROC) curves were computed and the area under the curve (AUC) values were calculated from the ROC curves to estimate the predictive accuracy of the survival risk models.

RESULTS

There was a significant difference in OS between the high-risk group (median, 28.1 months) and the low-risk group (median, 61.5 months) (permutated p-value <0.001). For PFS, there was also a significant difference in PFS between the high-risk group (10.9 months) and the low-risk group (22.3 months) (permutated p-value <0.001). Cross-validated AUC values were 0.807 for the OS and 0.747 for the PFS based on a defined landmark time t = 36 months. In comparisons between a predictive model containing only gene variables and a combined model containing both gene variables and clinical covariates, the predictive model containing gene variables without clinical covariates were effective and high AUC values for both OS and PFS were observed.

CONCLUSIONS

We designed a predictive model using a somatic mutation profile obtained from high-throughput genomic sequencing data in Ov-HGSC samples that may represent a new strategy for applying high-throughput sequencing data to clinical practice.

摘要

目的

最近的高通量测序技术在各种癌症中鉴定了整个外显子的大量体细胞突变。在这项研究中,我们从癌症基因组图谱数据门户生成了一个使用卵巢高级别浆液性癌(Ov-HGSC)的全外显子体细胞突变谱的预测模型。

方法

对 509 个基因进行分析,共有 311 例患者纳入总生存期(OS)建模,259 例患者纳入无进展生存期(PFS)建模。使用完整的逐一外推交叉验证来验证模型,在该过程的每次交叉验证迭代中重新选择基因。生成交叉验证的 Kaplan-Meier 曲线。计算交叉验证时间依赖性接收者操作特征(ROC)曲线,并从 ROC 曲线计算曲线下面积(AUC)值,以估计生存风险模型的预测准确性。

结果

高风险组(中位数,28.1 个月)和低风险组(中位数,61.5 个月)之间的 OS 存在显著差异(置换的 p 值<0.001)。对于 PFS,高风险组(10.9 个月)和低风险组(22.3 个月)之间的 PFS 也存在显著差异(置换的 p 值<0.001)。基于定义的里程碑时间 t=36 个月,OS 的交叉验证 AUC 值为 0.807,PFS 的交叉验证 AUC 值为 0.747。在仅包含基因变量的预测模型和包含基因变量和临床协变量的组合模型之间的比较中,包含无临床协变量的基因变量的预测模型是有效的,并且观察到 OS 和 PFS 的 AUC 值都很高。

结论

我们设计了一个使用从 Ov-HGSC 样本的高通量基因组测序数据获得的体细胞突变谱的预测模型,这可能代表将高通量测序数据应用于临床实践的一种新策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb7c/3542368/bb608374ff91/pone.0054089.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验