Department of Physics, Stanford University, Stanford, California, USA.
ACS Nano. 2013 Feb 26;7(2):1324-32. doi: 10.1021/nn304903m. Epub 2013 Jan 29.
We study the effect of remote hydrogen plasma on graphene deposited on SiO₂. We observe strong monolayer selectivity for reactions with plasma species, characterized by isotropic hole formation in the basal plane of monolayers and etching from the sheet edges. The areal density of etch pits on monolayers is 2 orders of magnitude higher than on bilayers or thicker sheets. For bilayer or thicker sheets, the etch pit morphology is also quite different: hexagonal etch pits of uniform size, indicating that etching is highly anisotropic and proceeds from pre-existing defects rather than nucleating continuously as on monolayers. The etch rate displays a pronounced dependence on sample temperature for monolayer and multilayer graphene alike: very slow at room temperature, peaking at 400 °C and suppressed entirely at 700 °C. Applying the same hydrogen plasma treatment to graphene deposited on the much smoother substrate mica leads to very similar phenomenology as on the rougher SiO₂, suggesting that a factor other than substrate roughness controls the reactivity of monolayer graphene with hydrogen plasma species.
我们研究了远程氢等离子体对沉积在 SiO₂ 上的石墨烯的影响。我们观察到等离子体与单层石墨烯反应具有很强的单层选择性,其特征是在单层的基面中形成各向同性的孔,并从片材边缘进行蚀刻。单层上的蚀坑的面密度比双层或更厚的片材高 2 个数量级。对于双层或更厚的片材,蚀坑的形态也非常不同:具有均匀大小的六边形蚀坑,表明蚀刻是高度各向异性的,并且是从预先存在的缺陷开始进行的,而不是像在单层上那样连续成核。对于单层和多层石墨烯,蚀刻速率对样品温度表现出明显的依赖性:在室温下非常缓慢,在 400°C 时达到峰值,在 700°C 时完全抑制。将相同的氢等离子体处理应用于沉积在更光滑基底云母上的石墨烯,会导致与在较粗糙的 SiO₂ 上非常相似的现象,这表明控制单层石墨烯与氢等离子体反应性的因素不是基底粗糙度。