Suppr超能文献

磁通驱动的拓扑量子相变及石墨烯管中完美边缘态的操控

Magnetic-flux-driven topological quantum phase transition and manipulation of perfect edge states in graphene tube.

作者信息

Lin S, Zhang G, Li C, Song Z

机构信息

School of Physics, Nankai University, Tianjin 300071, China.

College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China.

出版信息

Sci Rep. 2016 Aug 24;6:31953. doi: 10.1038/srep31953.

Abstract

We study the tight-binding model for a graphene tube with perimeter N threaded by a magnetic field. We show exactly that this model has different nontrivial topological phases as the flux changes. The winding number, as an indicator of topological quantum phase transition (QPT) fixes at N/3 if N/3 equals to its integer part [N/3], otherwise it jumps between [N/3] and [N/3] + 1 periodically as the flux varies a flux quantum. For an open tube with zigzag boundary condition, exact edge states are obtained. There exist two perfect midgap edge states, in which the particle is completely located at the boundary, even for a tube with finite length. The threading flux can be employed to control the quantum states: transferring the perfect edge state from one end to the other, or generating maximal entanglement between them.

摘要

我们研究了由磁场穿过、周长为N的石墨烯管的紧束缚模型。我们确切地表明,随着通量的变化,该模型具有不同的非平凡拓扑相。作为拓扑量子相变(QPT)指标的缠绕数,如果N/3等于其整数部分[N/3],则固定为N/3,否则随着通量变化一个磁通量子,它会在[N/3]和[N/3]+1之间周期性跳跃。对于具有锯齿形边界条件的开放管,得到了精确的边缘态。存在两个完美的能隙中间边缘态,其中粒子完全位于边界,即使对于有限长度的管也是如此。穿过的通量可用于控制量子态:将完美边缘态从一端转移到另一端,或在它们之间产生最大纠缠。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4805/4995410/309b95ceccbf/srep31953-f1.jpg

相似文献

2
Topological and transport properties of graphene-based nanojunctions subjected to a magnetic field.
Nanotechnology. 2020 Jan 10;31(2):025701. doi: 10.1088/1361-6528/ab440c. Epub 2019 Sep 12.
3
Photonic Realization of a Generic Type of Graphene Edge States Exhibiting Topological Flat Band.
Phys Rev Lett. 2023 Jul 7;131(1):013804. doi: 10.1103/PhysRevLett.131.013804.
4
Engineering topological phase transition and Aharonov-Bohm caging in a flux-staggered lattice.
J Phys Condens Matter. 2020 Oct 16;33(3). doi: 10.1088/1361-648X/abbc9a.
5
Topological edge states and fractional quantum Hall effect from umklapp scattering.
Phys Rev Lett. 2013 Nov 8;111(19):196401. doi: 10.1103/PhysRevLett.111.196401. Epub 2013 Nov 4.
6
Topological phases in population dynamics with rock-paper-scissors interactions.
Phys Rev E. 2024 Sep;110(3-1):034208. doi: 10.1103/PhysRevE.110.034208.
7
Soliton Fractional Charges in Graphene Nanoribbon and Polyacetylene: Similarities and Differences.
Nanomaterials (Basel). 2019 Jun 14;9(6):885. doi: 10.3390/nano9060885.
8
Topological States Characterized by Mirror Winding Numbers in Graphene with Bond Modulation.
Sci Rep. 2017 Nov 28;7(1):16515. doi: 10.1038/s41598-017-16334-0.
9
Quantum phase transitions and topological proximity effects in graphene nanoribbon heterostructures.
Nanoscale. 2014 Mar 21;6(6):3259-67. doi: 10.1039/c3nr05284b. Epub 2014 Feb 7.
10
Hofstadter Topology: Noncrystalline Topological Materials at High Flux.
Phys Rev Lett. 2020 Dec 4;125(23):236804. doi: 10.1103/PhysRevLett.125.236804.

引用本文的文献

1
Maximal distant entanglement in Kitaev tube.
Sci Rep. 2018 Aug 15;8(1):12202. doi: 10.1038/s41598-018-29691-1.

本文引用的文献

1
Topological Characterization of Extended Quantum Ising Models.
Phys Rev Lett. 2015 Oct 23;115(17):177204. doi: 10.1103/PhysRevLett.115.177204. Epub 2015 Oct 22.
2
Electric field control of soliton motion and stacking in trilayer graphene.
Nat Mater. 2014 Aug;13(8):786-9. doi: 10.1038/nmat3965. Epub 2014 Apr 28.
3
Exceptional ballistic transport in epitaxial graphene nanoribbons.
Nature. 2014 Feb 20;506(7488):349-54. doi: 10.1038/nature12952. Epub 2014 Feb 5.
4
Phase space for the breakdown of the quantum Hall effect in epitaxial graphene.
Phys Rev Lett. 2013 Aug 30;111(9):096601. doi: 10.1103/PhysRevLett.111.096601. Epub 2013 Aug 27.
5
Extreme monolayer-selectivity of hydrogen-plasma reactions with graphene.
ACS Nano. 2013 Feb 26;7(2):1324-32. doi: 10.1021/nn304903m. Epub 2013 Jan 29.
6
Detecting chiral edge states in the Hofstadter optical lattice.
Phys Rev Lett. 2012 Jun 22;108(25):255303. doi: 10.1103/PhysRevLett.108.255303. Epub 2012 Jun 19.
7
Designer Dirac fermions and topological phases in molecular graphene.
Nature. 2012 Mar 14;483(7389):306-10. doi: 10.1038/nature10941.
8
Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice.
Nature. 2012 Mar 14;483(7389):302-5. doi: 10.1038/nature10871.
9
Two-dimensional Mott-Hubbard electrons in an artificial honeycomb lattice.
Science. 2011 Jun 3;332(6034):1176-9. doi: 10.1126/science.1204333.
10
A graphene-based broadband optical modulator.
Nature. 2011 Jun 2;474(7349):64-7. doi: 10.1038/nature10067. Epub 2011 May 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验