Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC.
ACS Appl Mater Interfaces. 2013 Feb;5(4):1294-301. doi: 10.1021/am302430p. Epub 2013 Feb 13.
Conducting diamond nanowires (DNWs) films have been synthesized by N₂-based microwave plasma enhanced chemical vapor deposition. The incorporation of nitrogen into DNWs films is examined by C 1s X-ray photoemission spectroscopy and morphology of DNWs is discerned using field-emission scanning electron microscopy and transmission electron microscopy (TEM). The electron diffraction pattern, the visible-Raman spectroscopy, and the near-edge X-ray absorption fine structure spectroscopy display the coexistence of sp³ diamond and sp² graphitic phases in DNWs films. In addition, the microstructure investigation, carried out by high-resolution TEM with Fourier transformed pattern, indicates diamond grains and graphitic grain boundaries on surface of DNWs. The same result is confirmed by scanning tunneling microscopy and scanning tunneling spectroscopy (STS). Furthermore, the STS spectra of current-voltage curves discover a high tunneling current at the position near the graphitic grain boundaries. These highly conducting regimes of grain boundaries form effective electron paths and its transport mechanism is explained by the three-dimensional (3D) Mott's variable range hopping in a wide temperature from 300 to 20 K. Interestingly, this specific feature of high conducting grain boundaries of DNWs demonstrates a high efficiency in field emission and pave a way to the next generation of high-definition flat panel displays or plasma devices.
采用 N2 基微波等离子体增强化学气相沉积法合成了导带金刚石纳米线(DNWs)薄膜。利用 C 1s X 射线光电子能谱研究了氮掺入 DNWs 薄膜的情况,用场发射扫描电子显微镜和透射电子显微镜(TEM)研究了 DNWs 的形貌。电子衍射图、可见拉曼光谱和近边 X 射线吸收精细结构光谱显示,DNWs 薄膜中同时存在 sp³ 金刚石和 sp² 石墨相。此外,通过高分辨率 TEM 及其傅里叶变换图谱进行的微观结构研究表明,DNWs 表面存在金刚石晶粒和石墨晶界。扫描隧道显微镜和扫描隧道光谱(STS)也证实了这一结果。此外,电流-电压曲线的 STS 谱在靠近石墨晶界的位置发现了高隧穿电流。这些晶界的高导电区域形成了有效的电子路径,其输运机制可以用 300 到 20 K 宽温度范围内的三维(3D)Mott 变程跳跃来解释。有趣的是,DNWs 中高导电晶界的这一特殊特性展示了在场发射方面的高效率,为下一代高清晰度平板显示器或等离子体器件铺平了道路。