Lloret Fernando, Sankaran Kamatchi Jothiramalingam, Millán-Barba Josué, Desta Derese, Rouzbahani Rozita, Pobedinskas Paulius, Gutierrez Marina, Boyen Hans-Gerd, Haenen Ken
Institute for Materials Research (IMO), Hasselt University, 3590 Diepenbeek, Belgium.
IMOMEC, IMEC vzw, 3590 Diepenbeek, Belgium.
Nanomaterials (Basel). 2020 May 27;10(6):1024. doi: 10.3390/nano10061024.
Nanocrystalline diamond (NCD) field emitters have attracted significant interest for vacuum microelectronics applications. This work presents an approach to enhance the field electron emission (FEE) properties of NCD films by co-doping phosphorus (P) and nitrogen (N) using microwave plasma-enhanced chemical vapor deposition. While the methane (CH) and P concentrations are kept constant, the N concentration is varied from 0.2% to 2% and supplemented by H. The composition of the gas mixture is tracked in situ by optical emission spectroscopy. Scanning electron microscopy, atomic force microscopy (AFM), transmission electron microscopy, and Raman spectroscopy are used to provide evidence of the changes in crystal morphology, surface roughness, microstructure, and crystalline quality of the different NCD samples. The FEE results display that the 2% N concentration sample had the best FEE properties, viz. the lowest turn-on field value of 14.3 V/µm and the highest current value of 2.7 µA at an applied field of 73.0 V/µm. Conductive AFM studies reveal that the 2% N concentration NCD sample showed more emission sites, both from the diamond grains and the grain boundaries surrounding them. While phosphorus doping increased the electrical conductivity of the diamond grains, the incorporation of N during growth facilitated the formation of nano-graphitic grain boundary phases that provide conducting pathways for the electrons, thereby improving the FEE properties for the 2% N concentrated NCD films.
纳米晶金刚石(NCD)场发射体在真空微电子应用中引起了极大的关注。这项工作提出了一种通过微波等离子体增强化学气相沉积共掺杂磷(P)和氮(N)来提高NCD薄膜场电子发射(FEE)性能的方法。在甲烷(CH)和P浓度保持恒定的情况下,N浓度从0.2%变化到2%,并补充H。通过光发射光谱原位跟踪气体混合物的成分。使用扫描电子显微镜、原子力显微镜(AFM)、透射电子显微镜和拉曼光谱来提供不同NCD样品在晶体形态、表面粗糙度、微观结构和晶体质量方面变化的证据。FEE结果表明,2% N浓度的样品具有最佳的FEE性能,即在73.0 V/µm的外加电场下,开启场值最低为14.3 V/µm,电流值最高为2.7 µA。导电AFM研究表明,2% N浓度的NCD样品显示出更多的发射位点,这些位点既来自金刚石晶粒,也来自围绕它们的晶界。虽然磷掺杂提高了金刚石晶粒的电导率,但在生长过程中引入N促进了纳米石墨化晶界相的形成,这些相为电子提供了传导路径,从而改善了2% N浓度的NCD薄膜的FEE性能。