Han Song-I, Han Ki-Ho
School of Nano Engineering, Inje University, Gimhae, Republic of Korea.
Methods Mol Biol. 2013;949:169-84. doi: 10.1007/978-1-62703-134-9_12.
As lab-on-a-chips are developed for on-chip integrated microfluidic systems with multiple functions, the development of microfluidic interface (MFI) technology to enable integration of complex microfluidic systems becomes increasingly important and faces many technical difficulties. Such difficulties include the need for more complex structures, the possibility of biological or chemical cross-contamination between functional compartments, and the possible need for individual compartments fabricated from different substrate materials. This chapter introduces MFI technology, based on rapid stereolithography, for a glass-based miniaturized genetic sample preparation system, as an example of a complex lab-on-a-chip that could include functional elements such as; solid-phase DNA extraction, polymerase chain reaction, and capillary electrophoresis. To enable the integration of a complex lab-on-a-chip system in a single chip, MFI technology based on stereolithography provides a simple method for realizing complex arrangements of one-step plug-in microfluidic interconnects, integrated microvalves for microfluidic control, and optical windows for on-chip optical processes.
随着用于具有多种功能的片上集成微流体系统的芯片实验室的发展,开发微流体接口(MFI)技术以实现复杂微流体系统的集成变得越来越重要,并且面临许多技术难题。这些难题包括需要更复杂的结构、功能隔室之间生物或化学交叉污染的可能性,以及可能需要由不同衬底材料制造的各个隔室。本章介绍基于快速立体光刻的MFI技术,用于基于玻璃的小型化基因样本制备系统,作为一个复杂芯片实验室的示例,该芯片实验室可能包括诸如固相DNA提取、聚合酶链反应和毛细管电泳等功能元件。为了在单个芯片中实现复杂芯片实验室系统的集成,基于立体光刻的MFI技术提供了一种简单的方法,用于实现一步插入式微流体互连的复杂布置、用于微流体控制的集成微阀以及用于片上光学过程的光学窗口。