Suppr超能文献

关于序贯剂量探索中非参数方差估计的效率

On the efficiency of nonparametric variance estimation in sequential dose-finding.

作者信息

Hu Chih-Chi, Cheung Ying Kuen

机构信息

Department of Biostatistics, Columbia University, 722 West 168th Street, New York, New York 10032, U.S.A.

出版信息

J Stat Plan Inference. 2013 Mar;143(3):593-602. doi: 10.1016/j.jspi.2012.08.014.

Abstract

Dose-finding in clinical studies is typically formulated as a quantile estimation problem, for which a correct specification of the variance function of the outcomes is important. This is especially true for sequential study where the variance assumption directly involves in the generation of the design points and hence sensitivity analysis may not be performed after the data are collected. In this light, there is a strong reason for avoiding parametric assumptions on the variance function, although this may incur efficiency loss. In this article, we investigate how much information one may retrieve by making additional parametric assumptions on the variance in the context of a sequential least squares recursion. By asymptotic comparison, we demonstrate that assuming homoscedasticity achieves only a modest efficiency gain when compared to nonparametric variance estimation: when homoscedasticity in truth holds, the latter is at worst 88% as efficient as the former in the limiting case, and often achieves well over 90% efficiency for most practical situations. Extensive simulation studies concur with this observation under a wide range of scenarios.

摘要

临床研究中的剂量探索通常被表述为一个分位数估计问题,对于该问题而言,正确设定结果的方差函数很重要。这在序贯研究中尤为如此,因为方差假设直接涉及设计点的生成,因此在收集数据后可能无法进行敏感性分析。鉴于此,尽管这样做可能会导致效率损失,但仍有充分的理由避免对方差函数进行参数假设。在本文中,我们研究了在序贯最小二乘递归的背景下,通过对方差进行额外的参数假设可以获取多少信息。通过渐近比较,我们证明,与非参数方差估计相比,假设同方差仅能实现适度的效率提升:在实际存在同方差的情况下,在极限情况下,后者的效率最差为前者的88%,并且在大多数实际情况下,其效率通常远超过90%。广泛的模拟研究在各种场景下均证实了这一观察结果。

相似文献

4
Sequential designs for logistic phase I clinical trials.逻辑斯蒂I期临床试验的序贯设计
J Biopharm Stat. 2006;16(5):605-21. doi: 10.1080/10543400600860337.
9
Variance Function Partially Linear Single-Index Models.方差函数部分线性单指标模型
J R Stat Soc Series B Stat Methodol. 2015 Jan 1;77(1):171-194. doi: 10.1111/rssb.12066.

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验