Suppr超能文献

制定 AIS2+ 和 ICD-9 损伤代码之间的稳健映射。

Development of a robust mapping between AIS 2+ and ICD-9 injury codes.

机构信息

Health Sciences, Wake Forest University, Medical Center Boulevard, Winston-Salem, NC 27157, USA.

出版信息

Accid Anal Prev. 2013 Mar;52:133-43. doi: 10.1016/j.aap.2012.11.030. Epub 2013 Jan 16.

Abstract

Motor vehicle crashes result in millions of injuries and thousands of deaths each year in the United States. While most crash research datasets use Abbreviated Injury Scale (AIS) codes to identify injuries, most hospital datasets use the International Classification of Diseases, version 9 (ICD-9) codes. The objective of this research was to establish a one-to-one mapping between AIS and ICD-9 codes for use with motor vehicle crash injury research. This paper presents results from investigating different mapping approaches using the most common AIS 2+ injuries from the National Automotive Sampling System-Crashworthiness Data System (NASS-CDS). The mapping approaches were generated from the National Trauma Data Bank (NTDB) (428,637 code pairs), ICDMAP (2500 code pairs), and the Crash Injury Research and Engineering Network (CIREN) (4125 code pairs). Each approach may pair given AIS code with more than one ICD-9 code (mean number of pairs per AIS code: NTDB=211, ICDMAP=7, CIREN=5), and some of the potential pairs are unrelated. The mappings were evaluated using two comparative metrics coupled with qualitative inspection by an expert physician. Based on the number of false mappings and correct pairs, the best mapping was derived from CIREN. AIS and ICD-9 codes in CIREN are both manually coded, leading to more proper mappings between the two. Using the mapping presented herein, data from crash and hospital datasets can be used together to better understand and prevent motor vehicle crash injuries in the future.

摘要

在美国,每年都有数百万人因机动车事故受伤,数千人因此死亡。虽然大多数事故研究数据集使用损伤简略分级(AIS)代码来识别损伤,但大多数医院数据集使用国际疾病分类,第 9 版(ICD-9)代码。本研究的目的是建立 AIS 与 ICD-9 代码之间的一对一映射,以便用于机动车事故损伤研究。本文介绍了使用国家汽车抽样系统-耐撞性数据系统(NASS-CDS)中最常见的 AIS 2+损伤来研究不同映射方法的结果。这些映射方法是从国家创伤数据库(NTDB)(428637 对代码)、ICDMAP(2500 对代码)和事故伤害研究与工程网络(CIREN)(4125 对代码)生成的。每种方法都可能将特定的 AIS 代码与多个 ICD-9 代码进行配对(每个 AIS 代码的配对数量:NTDB=211,ICDMAP=7,CIREN=5),并且一些潜在的配对是不相关的。通过两种比较指标和专家医生的定性检查来评估这些映射。根据错误映射和正确配对的数量,CIREN 衍生出的映射最佳。CIREN 中的 AIS 和 ICD-9 代码都是手动编码的,因此这两个代码之间的映射更为恰当。使用本文提供的映射,可以将来自事故和医院数据集的数据结合使用,以便更好地了解和预防未来的机动车事故损伤。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验