Suppr超能文献

PreDNA:通过整合序列和几何结构信息来准确预测蛋白质中的 DNA 结合位点。

PreDNA: accurate prediction of DNA-binding sites in proteins by integrating sequence and geometric structure information.

机构信息

Laboratory of Theoretical Biophysics, School of Physical Sciences and Technology, College of Computer Science and The National Research Center for Animal Transgenic Biotechnology, Inner Mongolia University, Hohhot, 010021, China.

出版信息

Bioinformatics. 2013 Mar 15;29(6):678-85. doi: 10.1093/bioinformatics/btt029. Epub 2013 Jan 17.

Abstract

MOTIVATION

Protein-DNA interactions often take part in various crucial processes, which are essential for cellular function. The identification of DNA-binding sites in proteins is important for understanding the molecular mechanisms of protein-DNA interaction. Thus, we have developed an improved method to predict DNA-binding sites by integrating structural alignment algorithm and support vector machine-based methods.

RESULTS

Evaluated on a new non-redundant protein set with 224 chains, the method has 80.7% sensitivity and 82.9% specificity in the 5-fold cross-validation test. In addition, it predicts DNA-binding sites with 85.1% sensitivity and 85.3% specificity when tested on a dataset with 62 protein-DNA complexes. Compared with a recently published method, BindN+, our method predicts DNA-binding sites with a 7% better area under the receiver operating characteristic curve value when tested on the same dataset. Many important problems in cell biology require the dense non-linear interactions between functional modules be considered. Thus, our prediction method will be useful in detecting such complex interactions.

摘要

动机

蛋白质与 DNA 的相互作用通常参与各种关键过程,这些过程对于细胞功能至关重要。识别蛋白质中的 DNA 结合位点对于理解蛋白质-DNA 相互作用的分子机制很重要。因此,我们开发了一种通过整合结构比对算法和基于支持向量机的方法来预测 DNA 结合位点的改进方法。

结果

在一个具有 224 条链的新非冗余蛋白质集上进行评估,该方法在 5 倍交叉验证测试中具有 80.7%的灵敏度和 82.9%的特异性。此外,当在包含 62 个蛋白质-DNA 复合物的数据集上进行测试时,它可以预测出具有 85.1%灵敏度和 85.3%特异性的 DNA 结合位点。与最近发表的方法 BindN+相比,当在相同的数据集上进行测试时,我们的方法预测 DNA 结合位点的受试者工作特征曲线下面积值提高了 7%。细胞生物学中的许多重要问题都需要考虑功能模块之间密集的非线性相互作用。因此,我们的预测方法将有助于检测这种复杂的相互作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验