Suppr超能文献

DeepDISE:一种基于深度学习的 DNA 结合位点预测方法。

DeepDISE: DNA Binding Site Prediction Using a Deep Learning Method.

机构信息

Computational Drug Discovery Laboratory, School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA.

Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung 202, Taiwan.

出版信息

Int J Mol Sci. 2021 May 24;22(11):5510. doi: 10.3390/ijms22115510.

Abstract

It is essential for future research to develop a new, reliable prediction method of DNA binding sites because DNA binding sites on DNA-binding proteins provide critical clues about protein function and drug discovery. However, the current prediction methods of DNA binding sites have relatively poor accuracy. Using 3D coordinates and the atom-type of surface protein atom as the input, we trained and tested a deep learning model to predict how likely a voxel on the protein surface is to be a DNA-binding site. Based on three different evaluation datasets, the results show that our model not only outperforms several previous methods on two commonly used datasets, but also demonstrates its robust performance to be consistent among the three datasets. The visualized prediction outcomes show that the binding sites are also mostly located in correct regions. We successfully built a deep learning model to predict the DNA binding sites on target proteins. It demonstrates that 3D protein structures plus atom-type information on protein surfaces can be used to predict the potential binding sites on a protein. This approach should be further extended to develop the binding sites of other important biological molecules.

摘要

开发新的、可靠的 DNA 结合位点预测方法对于未来的研究至关重要,因为 DNA 结合蛋白上的 DNA 结合位点为蛋白质功能和药物发现提供了关键线索。然而,目前 DNA 结合位点的预测方法准确性相对较差。我们使用 3D 坐标和表面蛋白原子的原子类型作为输入,训练和测试了一个深度学习模型,以预测蛋白质表面上的体素成为 DNA 结合位点的可能性。基于三个不同的评估数据集,结果表明,我们的模型不仅在两个常用数据集上优于几个以前的方法,而且在三个数据集之间表现出一致的稳健性能。可视化的预测结果表明,结合位点也大多位于正确的区域。我们成功地建立了一个深度学习模型来预测靶蛋白上的 DNA 结合位点。这表明,3D 蛋白质结构加上蛋白质表面上的原子类型信息可用于预测蛋白质上的潜在结合位点。这种方法应该进一步扩展,以开发其他重要生物分子的结合位点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7461/8197219/d2efab0183c0/ijms-22-05510-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验