Suppr超能文献

连续暴露的非参数变量重要性度量的估计

Estimation of a non-parametric variable importance measure of a continuous exposure.

作者信息

Chambaz Antoine, Neuvial Pierre, van der Laan Mark J

机构信息

MAP5, Université Paris Descartes and CNRS.

出版信息

Electron J Stat. 2012;6:1059-1099. doi: 10.1214/12-EJS703.

Abstract

We define a new measure of variable importance of an exposure on a continuous outcome, accounting for potential confounders. The exposure features a reference level x(0) with positive mass and a continuum of other levels. For the purpose of estimating it, we fully develop the semi-parametric estimation methodology called targeted minimum loss estimation methodology (TMLE) [23, 22]. We cover the whole spectrum of its theoretical study (convergence of the iterative procedure which is at the core of the TMLE methodology; consistency and asymptotic normality of the estimator), practical implementation, simulation study and application to a genomic example that originally motivated this article. In the latter, the exposure X and response Y are, respectively, the DNA copy number and expression level of a given gene in a cancer cell. Here, the reference level is x(0) = 2, that is the expected DNA copy number in a normal cell. The confounder is a measure of the methylation of the gene. The fact that there is no clear biological indication that X and Y can be interpreted as an exposure and a response, respectively, is not problematic.

摘要

我们定义了一种新的衡量暴露因素对连续结局变量重要性的指标,同时考虑了潜在的混杂因素。该暴露因素具有一个具有正质量的参考水平x(0)以及一系列其他水平。为了对其进行估计,我们全面开发了一种称为靶向最小损失估计方法(TMLE)的半参数估计方法[23, 22]。我们涵盖了其理论研究的全范围(TMLE方法核心的迭代过程的收敛性;估计量的一致性和渐近正态性)、实际应用、模拟研究以及对最初激发本文的一个基因组实例的应用。在后者中,暴露因素X和反应Y分别是癌细胞中给定基因的DNA拷贝数和表达水平。这里,参考水平是x(0) = 2,即正常细胞中的预期DNA拷贝数。混杂因素是该基因的甲基化程度。X和Y分别被解释为暴露因素和反应这一事实缺乏明确的生物学依据,但这并无问题。

相似文献

2
Scalable collaborative targeted learning for high-dimensional data.可扩展的高维数据协作靶向学习。
Stat Methods Med Res. 2019 Feb;28(2):532-554. doi: 10.1177/0962280217729845. Epub 2017 Sep 22.

引用本文的文献

2
Comment: Models as (deliberate) approximations.评论:作为(有意为之的)近似值的模型。
Stat Sci. 2019 Nov;34(4):591-598. doi: 10.1214/19-STS747. Epub 2020 Jan 8.

本文引用的文献

1
Integrated genomic analyses of ovarian carcinoma.卵巢癌的综合基因组分析。
Nature. 2011 Jun 29;474(7353):609-15. doi: 10.1038/nature10166.
8
Super learner.超级学习者。
Stat Appl Genet Mol Biol. 2007;6:Article25. doi: 10.2202/1544-6115.1309. Epub 2007 Sep 16.
10
The epigenomics of cancer.癌症的表观基因组学。
Cell. 2007 Feb 23;128(4):683-92. doi: 10.1016/j.cell.2007.01.029.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验