Suppr超能文献

众包计算:利用竞争动态开发和完善高度预测性模型。

Crowd computing: using competitive dynamics to develop and refine highly predictive models.

机构信息

Boehringer Ingelheim Pharmaceuticals, 900 Ridgebury Road, Ridgefield, CT 06877, USA.

出版信息

Drug Discov Today. 2013 May;18(9-10):472-8. doi: 10.1016/j.drudis.2013.01.002. Epub 2013 Jan 19.

Abstract

A recent application of a crowd computing platform to develop highly predictive in silico models for use in the drug discovery process is described. The platform, Kaggle™, exploits a competitive dynamic that results in model optimization as the competition unfolds. Here, this dynamic is described in detail and compared with more-conventional modeling strategies. The complete and full structure of the underlying dataset is disclosed and some thoughts as to the broader utility of such 'gamification' approaches to the field of modeling are offered.

摘要

本文描述了一种最近应用众包平台开发高度预测性的计算机模拟模型用于药物发现过程的实例。Kaggle™平台利用竞争的动态性,随着竞争的展开,模型得到优化。本文详细描述了这种动态,并与更传统的建模策略进行了比较。还披露了基础数据集的完整和全部结构,并就此类“游戏化”方法在建模领域的更广泛应用提供了一些想法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验