文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

经颅直流电刺激的电流强度和极性特异性在线和后效:一项 fMRI 研究。

Current intensity- and polarity-specific online and aftereffects of transcranial direct current stimulation: An fMRI study.

机构信息

Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.

REVAL Research Institute, University of Hasselt, Hasselt, Belgium.

出版信息

Hum Brain Mapp. 2020 Apr 15;41(6):1644-1666. doi: 10.1002/hbm.24901. Epub 2019 Dec 20.


DOI:10.1002/hbm.24901
PMID:31860160
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7267945/
Abstract

Transcranial direct current stimulation (tDCS) induces polarity- and dose-dependent neuroplastic aftereffects on cortical excitability and cortical activity, as demonstrated by transcranial magnetic stimulation (TMS) and functional imaging (fMRI) studies. However, lacking systematic comparative studies between stimulation-induced changes in cortical excitability obtained from TMS, and cortical neurovascular activity obtained from fMRI, prevent the extrapolation of respective physiological and mechanistic bases. We investigated polarity- and intensity-dependent effects of tDCS on cerebral blood flow (CBF) using resting-state arterial spin labeling (ASL-MRI), and compared the respective changes to TMS-induced cortical excitability (amplitudes of motor evoked potentials, MEP) in separate sessions within the same subjects (n = 29). Fifteen minutes of sham, 0.5, 1.0, 1.5, and 2.0-mA anodal or cathodal tDCS was applied over the left primary motor cortex (M1) in a randomized repeated-measure design. Time-course changes were measured before, during and intermittently up to 120-min after stimulation. ROI analyses indicated linear intensity- and polarity-dependent tDCS after-effects: all anodal-M1 intensities increased CBF under the M1 electrode, with 2.0-mA increasing CBF the greatest (15.3%) compared to sham, while all cathodal-M1 intensities decreased left M1 CBF from baseline, with 2.0-mA decreasing the greatest (-9.3%) from sham after 120-min. The spatial distribution of perfusion changes correlated with the predicted electric field, as simulated with finite element modeling. Moreover, tDCS-induced excitability changes correlated more strongly with perfusion changes in the left sensorimotor region compared to the targeted hand-knob region. Our findings reveal lasting tDCS-induced alterations in cerebral perfusion, which are dose-dependent with tDCS parameters, but only partially account for excitability changes.

摘要

经颅直流电刺激(tDCS)通过经颅磁刺激(TMS)和功能成像(fMRI)研究证明,可引起皮质兴奋性和皮质活动的极性和剂量依赖性神经可塑性后效。然而,缺乏 TMS 获得的皮质兴奋性刺激诱导变化与 fMRI 获得的皮质神经血管活性之间的系统比较研究,限制了各自生理和机制基础的推断。我们使用静息状态动脉自旋标记(ASL-MRI)研究了 tDCS 对脑血流(CBF)的极性和强度依赖性影响,并在同一受试者的单独会话中比较了 TMS 诱导的皮质兴奋性(运动诱发电位振幅,MEP)的各自变化(n = 29)。在随机重复测量设计中,在左初级运动皮层(M1)上施加 15 分钟的假刺激、0.5、1.0、1.5 和 2.0 mA 阳极或阴极 tDCS。在刺激之前、期间和间歇性测量到 120 分钟的时间过程变化。ROI 分析表明 tDCS 后效具有线性强度和极性依赖性:所有阳极-M1 强度均增加了 M1 电极下的 CBF,2.0 mA 增加的 CBF 最大(与假刺激相比增加 15.3%),而所有阴极-M1 强度均降低了左 M1 CBF 与基线相比,2.0 mA 在 120 分钟后从假刺激中降低的最大(-9.3%)。灌注变化的空间分布与有限元建模模拟的预测电场相关。此外,与目标手旋钮区域相比,tDCS 诱导的兴奋性变化与左感觉运动区域的灌注变化相关性更强。我们的发现揭示了持久的 tDCS 诱导的脑灌注变化,这些变化与 tDCS 参数呈剂量依赖性,但仅部分解释了兴奋性变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3701/7267945/c4183bcfdb98/HBM-41-1644-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3701/7267945/b4ab7123b769/HBM-41-1644-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3701/7267945/a75ac723ee3a/HBM-41-1644-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3701/7267945/dc182c0f1f7f/HBM-41-1644-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3701/7267945/2f62c1373980/HBM-41-1644-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3701/7267945/f61791ca2b8a/HBM-41-1644-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3701/7267945/c4183bcfdb98/HBM-41-1644-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3701/7267945/b4ab7123b769/HBM-41-1644-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3701/7267945/a75ac723ee3a/HBM-41-1644-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3701/7267945/dc182c0f1f7f/HBM-41-1644-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3701/7267945/2f62c1373980/HBM-41-1644-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3701/7267945/f61791ca2b8a/HBM-41-1644-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3701/7267945/c4183bcfdb98/HBM-41-1644-g006.jpg

相似文献

[1]
Current intensity- and polarity-specific online and aftereffects of transcranial direct current stimulation: An fMRI study.

Hum Brain Mapp. 2020-4-15

[2]
Systematic evaluation of the impact of stimulation intensity on neuroplastic after-effects induced by transcranial direct current stimulation.

J Physiol. 2017-2-15

[3]
Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans.

J Physiol. 2013-1-21

[4]
Titrating the neuroplastic effects of cathodal transcranial direct current stimulation (tDCS) over the primary motor cortex.

Cortex. 2019-5-7

[5]
Intra-Subject Consistency and Reliability of Response Following 2 mA Transcranial Direct Current Stimulation.

Brain Stimul. 2016-6-21

[6]
Slow-oscillatory transcranial direct current stimulation can induce bidirectional shifts in motor cortical excitability in awake humans.

Neuroscience. 2010-1-18

[7]
Excitability modulation of the motor system induced by transcranial direct current stimulation: a multimodal approach.

Neuroimage. 2013-7-9

[8]
Differential effects of cathodal transcranial direct current stimulation of prefrontal, motor and somatosensory cortices on cortical excitability and pain perception - a double-blind randomised sham-controlled study.

Eur J Neurosci. 2015-10

[9]
Ca2+ channel dynamics explain the nonlinear neuroplasticity induction by cathodal transcranial direct current stimulation over the primary motor cortex.

Eur Neuropsychopharmacol. 2020-9

[10]
Transcranial direct current stimulation over the primary motor cortex during fMRI.

Neuroimage. 2011-1-4

引用本文的文献

[1]
The Effect of Single-Session Transcranial Direct Current Stimulation on Cerebral Blood Flow: A Systematic Review and Meta-Analysis.

Brain Topogr. 2025-8-28

[2]
Dose-response of tDCS effects on motor learning and cortical excitability: A preregistered study.

Imaging Neurosci (Camb). 2025-1-15

[3]
Variant Target Effects on Motor Learning With M1 Anodal tDCS.

Brain Behav. 2025-8

[4]
Resting-State Activity Changes Induced by tDCS in MS Patients and Healthy Controls: A Simultaneous tDCS rs-fMRI Study.

Bioengineering (Basel). 2025-6-19

[5]
Amplitude of Intracranial Induced Electric Fields Does Not Linearly Decrease with Age: A Computational Study of Anatomical Effects in Adults.

Biosensors (Basel). 2025-3-13

[6]
Exploring the nature of stuttering through a behavioral-neuro-modulation intervention program in bilinguals with stuttering.

Codas. 2025-1-27

[7]
Transcranial Direct Current Stimulation to Provide Neuroprotection and Enhance Cerebral Blood Flow in Stroke: A Comprehensive Review.

Medicina (Kaunas). 2024-12-14

[8]
A Literature Review on Optimal Stimulation Parameters of Transcranial Direct Current Stimulation for Motor Recovery After Stroke.

Brain Neurorehabil. 2024-11-28

[9]
The Physiological Mechanisms of Transcranial Direct Current Stimulation to Enhance Motor Performance: A Narrative Review.

Biology (Basel). 2024-10-2

[10]
Simultaneous and cumulative effects of tDCS on cerebral metabolic rate of oxygen in multiple sclerosis.

Front Hum Neurosci. 2024-7-16

本文引用的文献

[1]
Effects of electrode angle-orientation on the impact of transcranial direct current stimulation on motor cortex excitability.

Brain Stimul. 2018-10-25

[2]
Studying and modifying brain function with non-invasive brain stimulation.

Nat Neurosci. 2018-1-8

[3]
Incomplete evidence that increasing current intensity of tDCS boosts outcomes.

Brain Stimul. 2017-12-13

[4]
Computational human head models of tDCS: Influence of brain atrophy on current density distribution.

Brain Stimul. 2018

[5]
Plasticity induced by non-invasive transcranial brain stimulation: A position paper.

Clin Neurophysiol. 2017-11

[6]
Cerebral blood flow in normal aging adults: cardiovascular determinants, clinical implications, and aerobic fitness.

J Neurochem. 2017-11-7

[7]
Focal Hemodynamic Responses in the Stimulated Hemisphere During High-Definition Transcranial Direct Current Stimulation.

Neuromodulation. 2018-6

[8]
Multifocal tDCS targeting the resting state motor network increases cortical excitability beyond traditional tDCS targeting unilateral motor cortex.

Neuroimage. 2017-5-29

[9]
Limitations of ex vivo measurements for in vivo neuroscience.

Proc Natl Acad Sci U S A. 2017-5-1

[10]
Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity.

Neuroimage. 2017-7-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索