Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos-CSIC, Avda. Agustín Escardino 7, E-46980-Paterna, Valencia, Spain.
Int J Food Microbiol. 2013 Mar 1;162(1):26-36. doi: 10.1016/j.ijfoodmicro.2012.12.020. Epub 2012 Dec 31.
The growing demand for wines with a more pronounced aromatic profile calls for low temperature alcoholic fermentations (10-15°C). However, there are certain drawbacks to low temperature fermentations such as reduced growth rate, long lag phase and sluggish or stuck fermentations. The lipid metabolism of Saccharomyces cerevisiae plays a central role in low temperature adaptation. The aim of this study was to detect lipid metabolism genes involved in cold adaptation. To do so, we analyzed the growth of knockouts in phospholipids, sterols and sphingolipids, from the EUROSCARF collection S. cerevisiae BY4742 strain at low and optimal temperatures. Growth rate of these knockouts, compared with the control, enabled us to identify the genes involved, which were also deleted or overexpressed in a derivative haploid of a commercial wine strain. We identified genes involved in the phospholipid (PSD1 and OPI3), sterol (ERG3 and IDI1) and sphingolipid (LCB3) pathways, whose deletion strongly impaired growth at low temperature and whose overexpression reduced generation or division time by almost half. Our study also reveals many phenotypic differences between the laboratory strain and the commercial wine yeast strain, showing the importance of constructing mutant and overexpressing strains in both genetic backgrounds. The phenotypic differences in the mutant and overexpressing strains were correlated with changes in their lipid composition.
对具有更明显香气特征的葡萄酒的需求不断增长,这就需要进行低温酒精发酵(10-15°C)。然而,低温发酵存在一些缺点,例如生长速度减慢、迟滞期长、发酵缓慢或停滞。酿酒酵母的脂质代谢在低温适应中起着核心作用。本研究旨在检测与冷适应相关的脂质代谢基因。为此,我们分析了 EUROSCARF 收藏的酿酒酵母 BY4742 菌株中磷脂、甾醇和鞘脂缺失突变体在低温和最适温度下的生长情况。与对照相比,这些突变体的生长速度使我们能够识别出相关基因,这些基因也在商业葡萄酒菌株的一个单倍体衍生物中被缺失或过表达。我们鉴定了参与磷脂(PSD1 和 OPI3)、甾醇(ERG3 和 IDI1)和鞘脂(LCB3)途径的基因,其缺失严重影响低温下的生长,而过表达则使生成或分裂时间减少近一半。我们的研究还揭示了实验室菌株和商业葡萄酒酵母菌株之间的许多表型差异,表明在这两种遗传背景下构建突变体和过表达菌株的重要性。突变体和过表达菌株的表型差异与它们的脂质组成变化相关。