Suppr超能文献

大脑网络的维度与个体一生中自我控制的差异有关。

Dimensionality of brain networks linked to life-long individual differences in self-control.

机构信息

Rotman Research Institute at Baycrest, Toronto, Ontario, Canada M6A 2E1.

出版信息

Nat Commun. 2013;4:1373. doi: 10.1038/ncomms2374.

Abstract

The ability to delay gratification in childhood has been linked to positive outcomes in adolescence and adulthood. Here we examine a subsample of participants from a seminal longitudinal study of self-control throughout a subject's life span. Self-control, first studied in children at age 4 years, is now re-examined 40 years later, on a task that required control over the contents of working memory. We examine whether patterns of brain activation on this task can reliably distinguish participants with consistently low and high self-control abilities (low versus high delayers). We find that low delayers recruit significantly higher-dimensional neural networks when performing the task compared with high delayers. High delayers are also more homogeneous as a group in their neural patterns compared with low delayers. From these brain patterns, we can predict with 71% accuracy, whether a participant is a high or low delayer. The present results suggest that dimensionality of neural networks is a biological predictor of self-control abilities.

摘要

儿童时期延迟满足的能力与青少年和成年期的积极结果有关。在这里,我们研究了一项关于自我控制的重要纵向研究的参与者的子样本,该研究涵盖了一个人的整个生命周期。自我控制在 4 岁的儿童中首次被研究,现在在一项需要控制工作记忆内容的任务中重新进行了研究。我们检查在这项任务上的大脑激活模式是否可以可靠地区分具有一致的低和高自我控制能力的参与者(低延迟者与高延迟者)。我们发现,与高延迟者相比,低延迟者在执行任务时会招募到明显更高维的神经网络。与低延迟者相比,高延迟者的神经模式也更加一致。从这些大脑模式中,我们可以以 71%的准确率预测一个参与者是高延迟者还是低延迟者。本研究结果表明,神经网络的维度是自我控制能力的生物学预测指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0c8/3555568/c17c55d09b62/nihms428773f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验