Suppr超能文献

在 fMRI 研究中关注 I 型和 II 型错误:重新平衡天平。

Type I and Type II error concerns in fMRI research: re-balancing the scale.

机构信息

Department of Psychology, Franz Hall, University of California, Los Angeles, CA 90095-1563, USA.

出版信息

Soc Cogn Affect Neurosci. 2009 Dec;4(4):423-8. doi: 10.1093/scan/nsp052. Epub 2009 Dec 24.

Abstract

Statistical thresholding (i.e. P-values) in fMRI research has become increasingly conservative over the past decade in an attempt to diminish Type I errors (i.e. false alarms) to a level traditionally allowed in behavioral science research. In this article, we examine the unintended negative consequences of this single-minded devotion to Type I errors: increased Type II errors (i.e. missing true effects), a bias toward studying large rather than small effects, a bias toward observing sensory and motor processes rather than complex cognitive and affective processes and deficient meta-analyses. Power analyses indicate that the reductions in acceptable P-values over time are producing dramatic increases in the Type II error rate. Moreover, the push for a mapwide false discovery rate (FDR) of 0.05 is based on the assumption that this is the FDR in most behavioral research; however, this is an inaccurate assessment of the conventions in actual behavioral research. We report simulations demonstrating that combined intensity and cluster size thresholds such as P < 0.005 with a 10 voxel extent produce a desirable balance between Types I and II error rates. This joint threshold produces high but acceptable Type II error rates and produces a FDR that is comparable to the effective FDR in typical behavioral science articles (while a 20 voxel extent threshold produces an actual FDR of 0.05 with relatively common imaging parameters). We recommend a greater focus on replication and meta-analysis rather than emphasizing single studies as the unit of analysis for establishing scientific truth. From this perspective, Type I errors are self-erasing because they will not replicate, thus allowing for more lenient thresholding to avoid Type II errors.

摘要

在过去的十年中,功能磁共振成像(fMRI)研究中的统计阈值(即 P 值)变得越来越保守,试图将 I 型错误(即假警报)降低到传统上允许的行为科学研究水平。在本文中,我们研究了这种对 I 型错误的单一关注所带来的意外负面影响:增加了 II 型错误(即错过真实效应),偏向于研究大效应而不是小效应,偏向于观察感觉和运动过程而不是复杂认知和情感过程,以及元分析不足。功效分析表明,随着时间的推移,可接受的 P 值的降低导致 II 型错误率显著增加。此外,对全脑错误发现率(FDR)为 0.05 的推动是基于这样的假设,即这是大多数行为研究中的 FDR;然而,这是对实际行为研究中的传统的不准确评估。我们报告了模拟结果,表明结合强度和簇大小阈值,如 P < 0.005 和 10 个体素大小,可在 I 型和 II 型错误率之间取得理想的平衡。这种联合阈值产生了较高但可接受的 II 型错误率,并产生了与典型行为科学文章中有效 FDR 相当的 FDR(而 20 个体素大小阈值在相对常见的成像参数下产生实际 FDR 为 0.05)。我们建议更加关注复制和元分析,而不是强调单个研究作为确定科学真理的分析单位。从这个角度来看,I 型错误会自我消除,因为它们不会复制,从而可以放宽阈值以避免 II 型错误。

相似文献

8
Topological FDR for neuroimaging.基于拓扑学的神经影像学假阳性率校正。
Neuroimage. 2010 Feb 15;49(4):3057-64. doi: 10.1016/j.neuroimage.2009.10.090. Epub 2009 Nov 24.

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验