Jain Abhinandan, Park In-Hee, Vaidehi Nagarajan
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA , and Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
J Chem Theory Comput. 2012 Aug 14;8(8):2581-2587. doi: 10.1021/ct3002046. Epub 2012 Jul 5.
The principle of equipartition of (kinetic) energy for all-atom Cartesian molecular dynamics states that each momentum phase space coordinate on the average has ½kT of kinetic energy in a canonical ensemble. This principle is used in molecular dynamics simulations to initialize velocities, and to calculate statistical properties such as entropy. Internal coordinate molecular dynamics (ICMD) models differ from Cartesian models in that the overall kinetic energy depends on the generalized coordinates and includes cross-terms. Due to this coupled structure, no such equipartition principle holds for ICMD models. In this paper we introduce non-canonical modal coordinates to recover some of the structural simplicity of Cartesian models and develop a new equipartition principle for ICMD models. We derive low-order recursive computational algorithms for transforming between the modal and physical coordinates. The equipartition principle in modal coordinates provides a rigorous method for initializing velocities in ICMD simulations thus replacing the ad hoc methods used until now. It also sets the basis for calculating conformational entropy using internal coordinates.
全原子笛卡尔分子动力学的(动能)能量均分原理表明,在正则系综中,每个动量相空间坐标平均具有1/2kT的动能。该原理在分子动力学模拟中用于初始化速度,并计算诸如熵等统计性质。内坐标分子动力学(ICMD)模型与笛卡尔模型的不同之处在于,总动能取决于广义坐标并包括交叉项。由于这种耦合结构,ICMD模型不存在这样的均分原理。在本文中,我们引入非正则模态坐标以恢复笛卡尔模型的一些结构简单性,并为ICMD模型开发一种新的均分原理。我们推导了模态坐标和物理坐标之间转换的低阶递归计算算法。模态坐标中的均分原理为ICMD模拟中的速度初始化提供了一种严格的方法,从而取代了迄今为止使用的临时方法。它还为使用内坐标计算构象熵奠定了基础。