Suppr超能文献

用于研究群体编码的虚拟视网膜。

A virtual retina for studying population coding.

机构信息

Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY, USA.

出版信息

PLoS One. 2013;8(1):e53363. doi: 10.1371/journal.pone.0053363. Epub 2013 Jan 14.

Abstract

At every level of the visual system - from retina to cortex - information is encoded in the activity of large populations of cells. The populations are not uniform, but contain many different types of cells, each with its own sensitivities to visual stimuli. Understanding the roles of the cell types and how they work together to form collective representations has been a long-standing goal. This goal, though, has been difficult to advance, and, to a large extent, the reason is data limitation. Large numbers of stimulus/response relationships need to be explored, and obtaining enough data to examine even a fraction of them requires a great deal of experiments and animals. Here we describe a tool for addressing this, specifically, at the level of the retina. The tool is a data-driven model of retinal input/output relationships that is effective on a broad range of stimuli - essentially, a virtual retina. The results show that it is highly reliable: (1) the model cells carry the same amount of information as their real cell counterparts, (2) the quality of the information is the same - that is, the posterior stimulus distributions produced by the model cells closely match those of their real cell counterparts, and (3) the model cells are able to make very reliable predictions about the functions of the different retinal output cell types, as measured using Bayesian decoding (electrophysiology) and optomotor performance (behavior). In sum, we present a new tool for studying population coding and test it experimentally. It provides a way to rapidly probe the actions of different cell classes and develop testable predictions. The overall aim is to build constrained theories about population coding and keep the number of experiments and animals to a minimum.

摘要

在视觉系统的各个层次——从视网膜到大脑皮层——信息都是以大量细胞的活动形式进行编码的。这些细胞群体并不是均匀的,而是包含许多不同类型的细胞,每种细胞对视觉刺激都有其自身的敏感性。了解细胞类型的作用以及它们如何协同工作以形成集体表示一直是一个长期的目标。然而,这个目标一直难以实现,在很大程度上,原因是数据的限制。需要探索大量的刺激/反应关系,而获得足够的数据来检查其中的一小部分就需要进行大量的实验和使用大量的动物。在这里,我们描述了一种用于解决这个问题的工具,特别是在视网膜水平。该工具是一种基于数据的视网膜输入/输出关系模型,它对广泛的刺激都有效——本质上是一个虚拟的视网膜。结果表明,它具有很高的可靠性:(1)模型细胞携带的信息量与真实细胞相当;(2)信息质量相同——即模型细胞产生的后刺激分布与真实细胞非常匹配;(3)模型细胞能够对不同的视网膜输出细胞类型的功能进行非常可靠的预测,这是通过贝叶斯解码(电生理学)和光动性能(行为)来衡量的。总之,我们提出了一种用于研究群体编码的新工具,并对其进行了实验验证。它提供了一种快速探测不同细胞类型作用的方法,并产生了可测试的预测。总的目标是建立关于群体编码的约束理论,并将实验和动物的数量降至最低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd46/3544815/8291139aba0f/pone.0053363.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验