Suppr超能文献

蛋白质在固态纳米孔中的快速转运。

Fast translocation of proteins through solid state nanopores.

机构信息

Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands.

出版信息

Nano Lett. 2013 Feb 13;13(2):658-63. doi: 10.1021/nl3042678. Epub 2013 Jan 29.

Abstract

Measurements on protein translocation through solid-state nanopores reveal anomalous (non-Smoluchowski) transport behavior, as evidenced by extremely low detected event rates; that is, the capture rates are orders of magnitude smaller than what is theoretically expected. Systematic experimental measurements of the event rate dependence on the diffusion constant are performed by translocating proteins ranging in size from 6 to 660 kDa. The discrepancy is observed to be significantly larger for smaller proteins, which move faster and have a lower signal-to-noise ratio. This is further confirmed by measuring the event rate dependence on the pore size and concentration for a large 540 kDa protein and a small 37 kDa protein, where only the large protein follows the expected behavior. We dismiss various possible causes for this phenomenon and conclude that it is due to a combination of the limited temporal resolution and low signal-to-noise ratio. A one-dimensional first-passage time-distribution model supports this and suggests that the bulk of the proteins translocate on time scales faster than can be detected. We discuss the implications for protein characterization using solid-state nanopores and highlight several possible routes to address this problem.

摘要

通过固态纳米孔进行的蛋白质转运测量显示出异常(非斯莫鲁霍夫斯基)的传输行为,这可以从极低的检测事件率得到证明;也就是说,捕获率比理论上预期的要小几个数量级。通过转运大小在 6 到 660 kDa 之间的蛋白质,系统地进行了事件率对扩散常数的依赖性的实验测量。对于较小的蛋白质,差异被观察到显著更大,因为它们移动得更快,并且信噪比更低。通过测量对于一个大的 540 kDa 蛋白质和一个小的 37 kDa 蛋白质的孔尺寸和浓度对事件率的依赖性,进一步证实了这一点,其中只有大蛋白质遵循预期的行为。我们排除了这种现象的各种可能原因,并得出结论,这是由于有限的时间分辨率和低信噪比的组合。一维首次通过时间分布模型支持这一点,并表明大部分蛋白质在比可检测时间更快的时间尺度上转运。我们讨论了使用固态纳米孔进行蛋白质表征的影响,并强调了几种可能解决此问题的途径。

相似文献

1
Fast translocation of proteins through solid state nanopores.
Nano Lett. 2013 Feb 13;13(2):658-63. doi: 10.1021/nl3042678. Epub 2013 Jan 29.
2
Translocation of Rigid Rod-Shaped Virus through Various Solid-State Nanopores.
Anal Chem. 2016 Feb 16;88(4):2502-10. doi: 10.1021/acs.analchem.5b04905. Epub 2016 Feb 2.
3
Comparing Current Noise in Biological and Solid-State Nanopores.
ACS Nano. 2020 Feb 25;14(2):1338-1349. doi: 10.1021/acsnano.9b09353. Epub 2020 Feb 17.
6
Optoelectronic control of surface charge and translocation dynamics in solid-state nanopores.
Nat Nanotechnol. 2013 Dec;8(12):946-51. doi: 10.1038/nnano.2013.221. Epub 2013 Nov 3.
7
High-bandwidth protein analysis using solid-state nanopores.
Biophys J. 2014 Feb 4;106(3):696-704. doi: 10.1016/j.bpj.2013.12.025.
8
Counter-Intuitive Features of Particle Dynamics in Nanopores.
Int J Mol Sci. 2023 Nov 3;24(21):15923. doi: 10.3390/ijms242115923.
9
Temperature dependence of DNA translocations through solid-state nanopores.
Nanotechnology. 2015 Jun 12;26(23):234004. doi: 10.1088/0957-4484/26/23/234004. Epub 2015 May 21.
10
Protein diffusion through charged nanopores with different radii at low ionic strength.
Phys Chem Chem Phys. 2014 Oct 21;16(39):21570-6. doi: 10.1039/c4cp03198a. Epub 2014 Sep 5.

引用本文的文献

2
Controlled Sensing of User-Defined Aptamer-Based Targets Using Scanning Ionic Conductance Spectroscopy.
ACS Nano. 2025 Apr 8;19(13):13139-13148. doi: 10.1021/acsnano.4c18509. Epub 2025 Mar 31.
3
Detection of Ultra-Short KYCDE Peptides Using SiN Nanopores.
Electrophoresis. 2025 Mar 19. doi: 10.1002/elps.8122.
4
Solid-State Nanopore Real-Time Assay for Monitoring Cas9 Endonuclease Reactivity.
ACS Nano. 2025 Jan 28;19(3):3839-3851. doi: 10.1021/acsnano.4c15173. Epub 2025 Jan 15.
5
Enhanced Discriminability of Viral Vectors in Viscous Nanopores.
Small Methods. 2025 Jul;9(7):e2401321. doi: 10.1002/smtd.202401321. Epub 2025 Jan 2.
6
Immunological assay using a solid-state pore with a low limit of detection.
Sci Rep. 2024 Jul 19;14(1):16686. doi: 10.1038/s41598-024-67112-8.
7
Brownian Motion Paving the Way for Molecular Translocation in Nanopores.
Small Methods. 2024 Dec;8(12):e2400042. doi: 10.1002/smtd.202400042. Epub 2024 Apr 9.
9
10
Improving the Performance of Selective Solid-State Nanopore Sensing Using a Polyhistidine-Tagged Monovalent Streptavidin.
ACS Sens. 2024 Mar 22;9(3):1602-1610. doi: 10.1021/acssensors.4c00200. Epub 2024 Mar 7.

本文引用的文献

1
Ligand-receptor binding on nanoparticle-stabilized liposome surfaces.
Soft Matter. 2007 Apr 24;3(5):551-553. doi: 10.1039/b618172d.
2
PROBING SINGLE DNA MOLECULE TRANSPORT USING FABRICATED NANOPORES.
Nano Lett. 2004 Nov;4(11):2293-2298. doi: 10.1021/nl048654j.
3
DNA origami gatekeepers for solid-state nanopores.
Angew Chem Int Ed Engl. 2012 May 14;51(20):4864-7. doi: 10.1002/anie.201200688. Epub 2012 Apr 4.
4
Integrated nanopore sensing platform with sub-microsecond temporal resolution.
Nat Methods. 2012 Mar 18;9(5):487-92. doi: 10.1038/nmeth.1932.
5
Stochastic sensing of proteins with receptor-modified solid-state nanopores.
Nat Nanotechnol. 2012 Mar 11;7(4):257-63. doi: 10.1038/nnano.2012.24.
6
DNA origami nanopores.
Nano Lett. 2012 Jan 11;12(1):512-7. doi: 10.1021/nl204098n. Epub 2011 Dec 29.
7
Nanopore sensors for nucleic acid analysis.
Nat Nanotechnol. 2011 Sep 18;6(10):615-24. doi: 10.1038/nnano.2011.129.
8
Single-molecule transport across an individual biomimetic nuclear pore complex.
Nat Nanotechnol. 2011 Jun 19;6(7):433-8. doi: 10.1038/nnano.2011.88.
9
Nanopore translocation dynamics of a single DNA-bound protein.
Nano Lett. 2011 Jul 13;11(7):2978-82. doi: 10.1021/nl201541y. Epub 2011 Jun 17.
10
Chemical, thermal, and electric field induced unfolding of single protein molecules studied using nanopores.
Anal Chem. 2011 Jul 1;83(13):5137-44. doi: 10.1021/ac2001725. Epub 2011 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验