Suppr超能文献

使用扫描离子电导光谱法对基于用户定义适配体的靶标进行可控传感。

Controlled Sensing of User-Defined Aptamer-Based Targets Using Scanning Ionic Conductance Spectroscopy.

作者信息

Miljkovic Helena, Feletti Lely, Pistoletti Blanchet Gordanna, Penedo Marcos, Ayar Zahra, Drake Barney, Kuhn Alexandre, Yang Wayne, Fantner Georg E, Radenovic Aleksandra

机构信息

Laboratory of Nanoscale Biology (LBEN), Institute of Bioengineering, School of Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland.

NCCR Bio-Inspired Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.

出版信息

ACS Nano. 2025 Apr 8;19(13):13139-13148. doi: 10.1021/acsnano.4c18509. Epub 2025 Mar 31.

Abstract

Solid-state nanopores offer the possibility of detecting disease biomarkers in early diagnostic applications. Standard approaches harness fingerprinting, where protein targets are bound to DNA carriers and detected in free translocation with a solid-state nanopore. However, they suffer from several drawbacks, including uncontrolled fast translocations, which lead to low detection accuracy and a low signal-to-noise ratio (SNR). This has hampered their application in clinical settings. Here, we propose a nanopore-based system capable of sensing selected molecules of interest from biological fluids by harnessing programmable aptamer sequences attached to DNA carrier systems that are tethered to glass surfaces. This allows for spatial and velocity control over translocation in the , , and directions and enables the repeated scanning of the same analyte. The scanning ion conductance spectroscopy (SICS) based approach distinguishes itself from standard nanopore-based approaches with its ability to repeatedly scan the same aptamer molecule target site more than 5 times. We designed a DNA carrier with multiple binding sites for different aptamers to increase the yield of the experiment. Our approach achieves a detection rate of up to 74%, significantly higher than the 14% achieved with standard solid-state nanopore measurements. The strong spatial control also allows for significantly increased densities of aptamer target sites along the same DNA carrier, thereby paving the way for multiplexed sensing. The system offers user-defined programmability with different aptamer sequences, potentially expanding the use of our system to sense other disease biomarkers.

摘要

固态纳米孔为早期诊断应用中检测疾病生物标志物提供了可能性。标准方法利用指纹识别技术,即蛋白质靶标与DNA载体结合,并通过固态纳米孔在自由转运过程中进行检测。然而,它们存在几个缺点,包括无法控制的快速转运,这导致检测精度低和信噪比(SNR)低。这阻碍了它们在临床环境中的应用。在此,我们提出一种基于纳米孔的系统,该系统能够通过利用连接到固定在玻璃表面的DNA载体系统上的可编程适体序列,从生物流体中传感选定的感兴趣分子。这允许在x、y和z方向上对转运进行空间和速度控制,并能够对同一分析物进行重复扫描。基于扫描离子电导光谱(SICS)的方法与基于标准纳米孔的方法不同,它能够对同一个适体分子靶位点进行5次以上的重复扫描。我们设计了一种具有多个不同适体结合位点的DNA载体,以提高实验产量。我们的方法实现了高达74%的检测率,显著高于标准固态纳米孔测量所达到的14%。强大的空间控制还允许沿着同一DNA载体显著增加适体靶位点的密度,从而为多重传感铺平道路。该系统提供了使用不同适体序列的用户定义可编程性,有可能将我们的系统应用扩展到检测其他疾病生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b894/11984302/5e066fa074d4/nn4c18509_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验