Hennig D, Starikov E B, Archilla J F R, Palmero F
Freie Universität Berlin, Fachbereich Physik, Institut für Theoretische Physik, Arnimallee 14, 14195 Berlin, Germany.
J Biol Phys. 2004 Sep;30(3):227-38. doi: 10.1023/B:JOBP.0000046721.92623.a9.
We investigate the charge transport in synthetic DNA polymers built up from single type of base pairs. In the context of a polaronlike model, for which an electronic tight-binding system and bond vibrations of the double helix are coupled, we present estimates for the electron-vibration coupling strengths utilizing a quantum-chemical procedure. Subsequent studies concerning the mobility of polaron solutions, representing the state of a localized charge in unison with its associated helix deformation, show that the system for poly(dG)-poly(dC) and poly(dA)-poly(dT) DNA polymers, respectively possess quantitatively distinct transport properties. While the former supports unidirectionally moving electron breathers attributed to highly efficient long-range conductivity, the breather mobility in the latter case is comparatively restrained, inhibiting charge transport. Our results are in agreement with recent experimental results demonstrating that poly(dG)-poly(dC) DNA molecules acts as a semiconducting nanowire and exhibit better conductance than poly(dA)-poly(dT) ones.
我们研究了由单一类型碱基对构成的合成DNA聚合物中的电荷传输。在一个类似极化子的模型中,电子紧束缚系统与双螺旋的键振动相互耦合,我们利用量子化学方法给出了电子 - 振动耦合强度的估计值。随后关于极化子溶液迁移率的研究,该迁移率代表了局部电荷与其相关螺旋变形的统一状态,结果表明聚(dG)-聚(dC)和聚(dA)-聚(dT)DNA聚合物系统分别具有数量上截然不同的传输特性。前者支持归因于高效长程导电性的单向移动电子呼吸子,而后者情况下的呼吸子迁移率相对受限,抑制了电荷传输。我们的结果与最近的实验结果一致,实验表明聚(dG)-聚(dC)DNA分子充当半导体纳米线,并且比聚(dA)-聚(dT)分子表现出更好的导电性。