Pizano Arturo A, Olshansky Lisa, Holder Patrick G, Stubbe Joanne, Nocera Daniel G
Department of Chemistry, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
J Am Chem Soc. 2013 Sep 11;135(36):13250-3. doi: 10.1021/ja405498e. Epub 2013 Aug 26.
Substrate turnover in class Ia ribonucleotide reductase (RNR) requires reversible radical transport across two subunits over 35 Å, which occurs by a multistep proton-coupled electron-transfer mechanism. Using a photooxidant-labeled β2 subunit of Escherichia coli class Ia RNR, we demonstrate photoinitiated oxidation of a tyrosine in an α2:β2 complex, which results in substrate turnover. Using site-directed mutations of the redox-active tyrosines at the subunit interface, Y356F(β) and Y731F(α), this oxidation is identified to be localized on Y356. The rate of Y356 oxidation depends on the presence of Y731 across the interface. This observation supports the proposal that unidirectional PCET across the Y356(β)-Y731(α)-Y730(α) triad is crucial to radical transport in RNR.
I 类核糖核苷酸还原酶(RNR)中的底物周转需要通过多步质子耦合电子转移机制在两个亚基之间进行超过35 Å的可逆自由基传输。我们使用光氧化标记的大肠杆菌I类RNR的β2亚基,证明了α2:β2复合物中酪氨酸的光引发氧化,这导致了底物周转。通过对亚基界面处氧化还原活性酪氨酸进行定点突变,即Y356F(β)和Y731F(α),确定这种氧化定位于Y356。Y356氧化的速率取决于界面另一侧Y731的存在。这一观察结果支持了这样的提议,即通过Y356(β)-Y731(α)-Y730(α)三联体的单向质子耦合电子转移对于RNR中的自由基传输至关重要。