Emerson S D, La Mar G N
Department of Chemistry, University of California, Davis 95616.
Biochemistry. 1990 Feb 13;29(6):1556-66. doi: 10.1021/bi00458a029.
The experimentally determined paramagnetic dipolar shifts for noncoordinated amino acid side-chain protons in the heme pocket of sperm whale cyanometmyoglobin [Emerson, S. d., & La Mar, G. N. (1990) Biochemistry (preceding paper in this issue]) were used to determine in solution the orientation of the principal axes for the paramagnetic susceptibility tensor relative to the heme iron molecular coordinates. The determination was made by a least-squares search for the unique Euler rotation angles which convert the geometric factors in the molecular (crystal) coordinates to ones that correctly predict each of 41 known dipolar shifts by using the magnetic anisotropies computed previously [Horrocks, W. D., Jr., & Greenberg, E. S. (973) Biochim. Biophys. Acta 322, 38-44]. An excellent fit to experimental shifts was obtained, which also provided predictions that allowed subsequent new assignments to be made. The magnetic axes are oriented so that the z axis is tipped approximately 15 degrees from the heme normal toward the hem delta-meso-H and coincides approximately with the characterized FeCO tilt axis in the isostructural MbCO complex [Kuriyan, J., Wilz, S., Karplus, M., & Petsko, G. A. (1986) J. Mol. Biol. 192, 133-154]. Since the FeCO and FeCN units are isostructural, we propose that the dominant protein constraints that tips the magnetic z axis from the heme normal is the tilt of the FeCN by steric interactions with the distal residues. The rhombic magnetic axes were found to align closely with the projection of the proximal His imidazole plane on the heme, confirming that the His-Fe bonding provides the protein constraints that orients the in-plane anisotrophy. The tipped magnetic z axis is shown to account quantitatively for the previously noted major discrepancy between the hyperfine shift patterns for the bound imidazole side chain in models and protein. Moreover, it is shown that the proximal His ring nolabile proton hyperfine shifts provide direct and exquisitely sensitive indicators of the degree of the z axis tilt that may serve as a valuable probe for characterizing variable steric interactions in the distal pocket of both point mutants and natural genetic variants of myoglobin.
利用实验测定的抹香鲸氰化高铁肌红蛋白血红素口袋中非配位氨基酸侧链质子的顺磁偶极位移[Emerson, S. d., & La Mar, G. N. (1990) Biochemistry(本期之前的论文)],在溶液中确定顺磁磁化率张量主轴相对于血红素铁分子坐标的取向。通过最小二乘法搜索唯一的欧拉旋转角来进行测定,这些旋转角将分子(晶体)坐标中的几何因子转换为通过使用先前计算的磁各向异性[Horrocks, W. D., Jr., & Greenberg, E. S. (1973) Biochim. Biophys. Acta 322, 38 - 44]能正确预测41个已知偶极位移中每一个的因子。得到了与实验位移的极佳拟合,这也提供了预测,使得后续能够进行新的归属。磁轴的取向使得z轴从血红素法线向血红素δ - 中 - H倾斜约15度,并且大致与同构的MbCO复合物中已表征的FeCO倾斜轴重合[Kuriyan, J., Wilz, S., Karplus, M., & Petsko, G. A. (1986) J. Mol. Biol. 192, 133 - 154]。由于FeCO和FeCN单元是同构的,我们提出使磁z轴从血红素法线倾斜的主要蛋白质限制因素是FeCN通过与远端残基的空间相互作用而发生的倾斜。发现菱形磁轴与近端组氨酸咪唑平面在血红素上的投影紧密对齐,证实了His - Fe键合提供了使平面内各向异性取向的蛋白质限制。倾斜的磁z轴被证明能够定量解释先前在模型和蛋白质中结合的咪唑侧链的超精细位移模式之间所指出的主要差异。此外,结果表明近端组氨酸环不稳定质子的超精细位移提供了z轴倾斜程度的直接且极其灵敏的指标,这可作为表征肌红蛋白点突变体和天然遗传变体远端口袋中可变空间相互作用的有价值探针。