Suppr超能文献

来源于集胞藻 PCC 6803 和聚球藻 PCC 7002 的血红蛋白中的电子自交换和自放大的翻译后修饰。

Electron self-exchange and self-amplified posttranslational modification in the hemoglobins from Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002.

机构信息

T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.

出版信息

J Biol Inorg Chem. 2012 Apr;17(4):599-609. doi: 10.1007/s00775-012-0880-5. Epub 2012 Feb 14.

Abstract

Many heme proteins undergo covalent attachment of the heme group to a protein side chain. Such posttranslational modifications alter the thermodynamic and chemical properties of the holoprotein. Their importance in biological processes makes them attractive targets for mechanistic studies. We have proposed a reductively driven mechanism for the covalent heme attachment in the monomeric hemoglobins produced by the cyanobacteria Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803 (GlbN) (Nothnagel et al. in J Biol Inorg Chem 16:539-552, 2011). These GlbNs coordinate the heme iron with two axial histidines, a feature that distinguishes them from most hemoglobins and conditions their redox properties. Here, we uncovered evidence for an electron exchange chain reaction leading to complete heme modification upon substoichiometric reduction of GlbN prepared in the ferric state. The GlbN electron self-exchange rate constants measured by NMR spectroscopy were on the order of 10(2)-10(3) M(-1) s(-1) and were consistent with the proposed autocatalytic process. NMR data on ferrous and ferric Synechococcus GlbN in solution indicated little dependence of the structure on the redox state of the iron or cross-link status of the heme group. This allowed the determination of lower bounds to the cross-exchange rate constants according to Marcus theory. The observations illustrate the ability of bishistidine hemoglobins to undergo facile interprotein electron transfer and the chemical relevance of such transfer for covalent heme attachment.

摘要

许多血红素蛋白经历血红素基团与蛋白质侧链的共价连接。这种翻译后修饰改变了全蛋白的热力学和化学性质。它们在生物过程中的重要性使它们成为机制研究的有吸引力的目标。我们提出了一种还原驱动的机制,用于蓝藻 Synechococcus sp. PCC 7002 和 Synechocystis sp. PCC 6803(GlbN)(Nothnagel 等人在 J Biol Inorg Chem 16:539-552, 2011 年)产生的单体血红蛋白中的共价血红素附着。这些 GlbN 通过两个轴向组氨酸与血红素铁配位,这一特征将它们与大多数血红蛋白区分开来,并调节它们的氧化还原性质。在这里,我们发现了证据表明,在 GlbN 以三价状态制备时进行亚化学计量还原,会导致完全的血红素修饰,从而引发电子交换链反应。通过 NMR 光谱测量的 GlbN 电子自交换速率常数在 10(2)-10(3) M(-1) s(-1)范围内,与拟议的自催化过程一致。溶液中亚铁和三价 Synechococcus GlbN 的 NMR 数据表明,结构对铁的氧化还原状态或血红素基团的交联状态的依赖性很小。这允许根据 Marcus 理论确定交叉交换速率常数的下限。这些观察结果说明了双组氨酸血红蛋白能够进行容易的蛋白质间电子转移,以及这种转移对共价血红素附着的化学相关性。

相似文献

3
Facile heme vinyl posttranslational modification in a hemoglobin.
Biochemistry. 2013 May 21;52(20):3478-88. doi: 10.1021/bi400289e. Epub 2013 May 6.
4
Covalent attachment of the heme to Synechococcus hemoglobin alters its reactivity toward nitric oxide.
J Inorg Biochem. 2017 Dec;177:171-182. doi: 10.1016/j.jinorgbio.2017.09.018. Epub 2017 Sep 22.
6
Volumetric properties underlying ligand binding in a monomeric hemoglobin: a high-pressure NMR study.
Biochim Biophys Acta. 2013 Sep;1834(9):1910-22. doi: 10.1016/j.bbapap.2013.04.016. Epub 2013 Apr 22.
9
Histidine-Lysine Axial Ligand Switching in a Hemoglobin: A Role for Heme Propionates.
Biochemistry. 2018 Feb 6;57(5):631-644. doi: 10.1021/acs.biochem.7b01155. Epub 2018 Jan 10.

引用本文的文献

1
Replacement of the Distal Histidine Reveals a Noncanonical Heme Binding Site in a 2-on-2 Hemoglobin.
Biochemistry. 2018 Oct 9;57(40):5785-5796. doi: 10.1021/acs.biochem.8b00752. Epub 2018 Sep 28.
2
Histidine-Lysine Axial Ligand Switching in a Hemoglobin: A Role for Heme Propionates.
Biochemistry. 2018 Feb 6;57(5):631-644. doi: 10.1021/acs.biochem.7b01155. Epub 2018 Jan 10.
3
Covalent attachment of the heme to Synechococcus hemoglobin alters its reactivity toward nitric oxide.
J Inorg Biochem. 2017 Dec;177:171-182. doi: 10.1016/j.jinorgbio.2017.09.018. Epub 2017 Sep 22.
4
Helix-Capping Histidines: Diversity of N-H···N Hydrogen Bond Strength Revealed by (2h)JNN Scalar Couplings.
Biochemistry. 2015 Nov 24;54(46):6896-908. doi: 10.1021/acs.biochem.5b01002. Epub 2015 Nov 12.
5
Introduction of a covalent histidine-heme linkage in a hemoglobin: a promising tool for heme protein engineering.
J Inorg Biochem. 2014 Dec;141:198-207. doi: 10.1016/j.jinorgbio.2014.09.009. Epub 2014 Sep 28.

本文引用的文献

2
Crystal structures of Parasponia and Trema hemoglobins: differential heme coordination is linked to quaternary structure.
Biochemistry. 2011 May 24;50(20):4273-80. doi: 10.1021/bi2002423. Epub 2011 Apr 27.
4
Structure and reactivity of hexacoordinate hemoglobins.
Biophys Chem. 2010 Nov;152(1-3):1-14. doi: 10.1016/j.bpc.2010.08.008. Epub 2010 Sep 21.
5
Functional and structural characterization of the 2/2 hemoglobin from Synechococcus sp. PCC 7002.
Biochemistry. 2010 Aug 24;49(33):7000-11. doi: 10.1021/bi100463d.
6
Fitting enzyme kinetic data with KinTek Global Kinetic Explorer.
Methods Enzymol. 2009;467:601-626. doi: 10.1016/S0076-6879(09)67023-3.
8
TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts.
J Biomol NMR. 2009 Aug;44(4):213-23. doi: 10.1007/s10858-009-9333-z. Epub 2009 Jun 23.
9
FitSpace explorer: an algorithm to evaluate multidimensional parameter space in fitting kinetic data.
Anal Biochem. 2009 Apr 1;387(1):30-41. doi: 10.1016/j.ab.2008.12.025. Epub 2008 Dec 25.
10
The chemistry and biochemistry of heme c: functional bases for covalent attachment.
Nat Prod Rep. 2008 Dec;25(6):1118-30. doi: 10.1039/b717196j. Epub 2008 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验