Suppr超能文献

使用广义溶剂边界势(GSBP)和周期性边界条件进行自由能计算:蛋白质中离子溶剂化和氧化自由能的比较分析。

Charging free energy calculations using the Generalized Solvent Boundary Potential (GSBP) and periodic boundary condition: a comparative analysis using ion solvation and oxidation free energy in proteins.

机构信息

Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA.

出版信息

J Phys Chem B. 2013 Feb 21;117(7):2005-18. doi: 10.1021/jp309877z. Epub 2013 Feb 8.

Abstract

Free energy simulations using a finite sphere boundary condition rather than a periodic boundary condition (PBC) are attractive in the study of very large biomolecular systems. To understand the quantitative impact of various approximations in such simulations, we compare charging free energies in both solution and protein systems calculated in a linear response framework with the Generalized Solvent Boundary Potential (GSBP) and PBC simulations. For simple ions in solution, we find good agreements between GSBP and PBC charging free energies, once the relevant correction terms are taken into consideration. For PBC simulations with the particle-mesh-Ewald for long-range electrostatics, the contribution (ΔG(P-M)) due to the use of a particle rather than molecule based summation scheme in real space is found to be significant, as pointed out by Hünenberger and co-workers. For GSBP, when the inner region is close to be charge neutral, the key correction is the overpolarization of water molecules at the inner/outer dielectric boundary; the magnitude of the correction (ΔG(s-pol)), however, is relatively small. For charging (oxidation) free energy in proteins, the situation is more complex, although good agreement between GSBP and PBC can still be obtained when care is exercised. The smooth dielectric boundary approximation inherent to GSBP tends to make significant errors when the inner region is featured with a high net charge. However, the error can be corrected with Poisson-Boltzmann calculations using snapshots from GSBP simulations in a straightforward and robust manner. Because of the more complex charge and solvent distributions, the magnitudes of ΔG(P-M) and ΔG(s-pol) in protein simulations appear to be different from those derived for solution simulations, leading to uncertainty in directly comparing absolute charging free energies from PBC and GSBP simulations for protein systems. The relative charging/oxidation free energies, however, are robust. With the linear response approximation, for the specific protein system (CueR) studied, the effect of freezing the protein structure in the outer region is found to be small, unless a very small (8 Å) inner region is used; even in the latter case, the result is substantially improved when the nearby metal binding loop is allowed to respond to metal oxidation. The implications of these results to the applicability of GSBP to complex biomolecules and in ab initio QM/MM simulations are discussed.

摘要

在研究非常大的生物分子系统时,使用有限球体边界条件而不是周期性边界条件 (PBC) 进行自由能模拟很有吸引力。为了了解此类模拟中各种近似的定量影响,我们在线性响应框架内比较了使用广义溶剂边界势 (GSBP) 和 PBC 模拟计算的溶液和蛋白质系统中的各种电荷自由能。对于溶液中的简单离子,我们发现一旦考虑了相关的修正项,GSBP 和 PBC 充电自由能之间存在很好的一致性。对于使用长程静电的粒子网格 Ewald (PME) 的 PBC 模拟,正如 Hünenberger 及其同事所指出的那样,由于在实空间中使用基于粒子而不是基于分子的求和方案,发现使用粒子而不是分子的贡献 (ΔG(P-M)) 是显著的。对于 GSBP,当内区接近电荷中性时,关键的修正项是内/外介电边界处水分子的过极化;然而,修正的幅度(ΔG(s-pol))相对较小。对于蛋白质中的充电(氧化)自由能,情况更加复杂,尽管在谨慎使用时仍然可以获得 GSBP 和 PBC 之间的良好一致性。GSBP 固有的平滑介电边界近似在内部区域具有高净电荷时往往会产生较大的误差。然而,可以通过使用 GSBP 模拟快照以直接和稳健的方式进行泊松-玻尔兹曼计算来纠正该误差。由于电荷和溶剂分布更加复杂,蛋白质模拟中 ΔG(P-M) 和 ΔG(s-pol) 的幅度似乎与溶液模拟中得出的幅度不同,导致直接比较蛋白质系统中 PBC 和 GSBP 模拟的绝对充电自由能存在不确定性。然而,相对充电/氧化自由能是稳健的。在线性响应近似下,对于所研究的特定蛋白质系统 (CueR),发现冻结外区蛋白质结构的效果很小,除非使用非常小的 (8 Å) 内区;即使在后一种情况下,当允许附近的金属结合环对金属氧化做出反应时,结果也会得到显著改善。讨论了这些结果对 GSBP 应用于复杂生物分子和从头算 QM/MM 模拟的适用性的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验