Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
J Am Chem Soc. 2013 Mar 20;135(11):4175-8. doi: 10.1021/ja3112912. Epub 2013 Mar 11.
The translational hydration dynamics within 0.5-1.5 nm of the surface of a DPPC liposome, a model biomacromolecular surface, is analyzed by the recently developed Overhauser dynamic nuclear polarization (ODNP) technique. We find that dramatic changes to the bulk solvent cause only weak changes in the surface hydration dynamics. Specifically, both a >10-fold increase in bulk viscosity and the restriction of diffusion by confinement on a multiple nm length-scale change the local translational diffusion coefficient of the surface water surrounding the lipid bilayer by <2.5-fold. By contrast, previous ODNP studies have shown that changes to the biomacromolecular surface induced by folding, binding, or aggregation can cause local hydration dynamics to vary by factors of up to 30. We suggest that the surface topology and chemistry at the ≤1.5 nm scale, rather than the characteristics of the solvent, nearly exclusively determine the macromolecule's surface hydration dynamics.
通过最近开发的过饱和动态核极化(ODNP)技术,分析了 DPPC 脂质体(一种模型生物大分子表面)表面 0.5-1.5nm 范围内的翻译水动力学。我们发现,对主体溶剂的剧烈变化仅导致表面水动力学的微弱变化。具体而言,主体粘度增加 10 多倍以及通过限制在多个纳米长度范围内的扩散,使脂质双层周围表面水的局部平移扩散系数变化<2.5 倍。相比之下,先前的 ODNP 研究表明,由折叠、结合或聚集引起的生物大分子表面的变化可导致局部水合动力学变化高达 30 倍。我们认为,在≤1.5nm 尺度上的表面拓扑和化学性质,而不是溶剂的特性,几乎完全决定了大分子的表面水合动力学。