Moon Joshua D, Webber Thomas R, Brown Dennis Robinson, Richardson Peter M, Casey Thomas M, Segalman Rachel A, Shell M Scott, Han Songi
Materials Department, University of California Santa Barbara California 93106 USA.
Department of Chemical Engineering, University of California Santa Barbara California 93106 USA
Chem Sci. 2024 Jan 15;15(7):2495-2508. doi: 10.1039/d3sc05377f. eCollection 2024 Feb 14.
The separation and anti-fouling performance of water purification membranes is governed by both macroscopic and molecular-scale water properties near polymer surfaces. However, even for poly(ethylene oxide) (PEO) - ubiquitously used in membrane materials - there is little understanding of whether or how the molecular structure of water near PEO surfaces affects macroscopic water diffusion. Here, we probe both time-averaged bulk and local water dynamics in dilute and concentrated PEO solutions using a unique combination of experimental and simulation tools. Pulsed-Field Gradient NMR and Overhauser Dynamic Nuclear Polarization (ODNP) capture water dynamics across micrometer length scales in sub-seconds to sub-nanometers in tens of picoseconds, respectively. We find that classical models, such as the Stokes-Einstein and Mackie-Meares relations, cannot capture water diffusion across a wide range of PEO concentrations, but that free volume theory can. Our study shows that PEO concentration affects macroscopic water diffusion by enhancing the water structure and altering free volume. ODNP experiments reveal that water diffusivity near PEO is slower than in the bulk in dilute solutions, previously not recognized by macroscopic transport measurements, but the two populations converge above the polymer overlap concentration. Molecular dynamics simulations reveal that the reduction in water diffusivity occurs with enhanced tetrahedral structuring near PEO. Broadly, we find that PEO does not simply behave like a physical obstruction but directly modifies water's structural and dynamic properties. Thus, even in simple PEO solutions, molecular scale structuring and the impact of polymer interfaces is essential to capturing water diffusion, an observation with important implications for water transport through structurally complex membrane materials.
水净化膜的分离和抗污染性能受聚合物表面附近宏观和分子尺度的水性质支配。然而,即使对于膜材料中普遍使用的聚环氧乙烷(PEO),人们对PEO表面附近水的分子结构是否以及如何影响宏观水扩散仍知之甚少。在这里,我们使用实验和模拟工具的独特组合,探究了稀溶液和浓溶液中PEO的时间平均体相和局部水动力学。脉冲场梯度核磁共振(Pulsed-Field Gradient NMR)和奥弗豪泽动态核极化(Overhauser Dynamic Nuclear Polarization,ODNP)分别在亚秒级的微米长度尺度和几十皮秒级的亚纳米尺度上捕捉水动力学。我们发现,诸如斯托克斯-爱因斯坦(Stokes-Einstein)和麦基-米尔斯(Mackie-Meares)关系等经典模型无法捕捉广泛PEO浓度范围内的水扩散,但自由体积理论可以。我们的研究表明,PEO浓度通过增强水结构和改变自由体积来影响宏观水扩散。ODNP实验表明,在稀溶液中,PEO附近的水扩散系数比体相中的慢,这一点以前未被宏观传输测量所认识到,但在聚合物重叠浓度以上,这两种情况趋于一致。分子动力学模拟表明,水扩散系数的降低是由于PEO附近四面体结构增强所致。总体而言,我们发现PEO不仅仅表现为物理障碍物,而是直接改变水的结构和动态性质。因此,即使在简单的PEO溶液中,分子尺度的结构和聚合物界面的影响对于捕捉水扩散至关重要,这一观察结果对于水通过结构复杂的膜材料的传输具有重要意义。