Chugunov Anton O, Volynsky Pavel E, Krylov Nikolay A, Boldyrev Ivan A, Efremov Roman G
M.M. Shemyakin &Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow 117997.
1] M.M. Shemyakin &Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow 117997 [2] Joint Supercomputer Center, Russian Academy of Sciences, Leninsky prospect, 32a, Moscow 119991, Russia.
Sci Rep. 2014 Dec 12;4:7462. doi: 10.1038/srep07462.
Archaeal plasma membranes appear to be extremely durable and almost impermeable to water and ions, in contrast to the membranes of Bacteria and Eucaryota. Additionally, they remain liquid within a temperature range of 0-100°C. These are the properties that have most likely determined the evolutionary fate of Archaea, and it may be possible for bionanotechnology to adopt these from nature. In this work, we use molecular dynamics simulations to assess at the atomistic level the structure and dynamics of a series of model archaeal membranes with lipids that have tetraether chemical nature and "branched" hydrophobic tails. We conclude that the branched structure defines dense packing and low water permeability of archaeal-like membranes, while at the same time ensuring a liquid-crystalline state, which is vital for living cells. This makes tetraether lipid systems promising in bionanotechnology and material science, namely for design of new and unique membrane nanosystems.
与细菌和真核生物的膜相比,古菌的质膜似乎极其耐用,几乎对水和离子不可渗透。此外,它们在0-100°C的温度范围内仍保持液态。这些特性很可能决定了古菌的进化命运,生物纳米技术有可能从自然界采用这些特性。在这项工作中,我们使用分子动力学模拟在原子水平上评估一系列具有四醚化学性质和“分支”疏水尾部的脂质的模型古菌膜的结构和动力学。我们得出结论,分支结构定义了类古菌膜的紧密堆积和低水渗透性,同时确保液晶态,这对活细胞至关重要。这使得四醚脂质系统在生物纳米技术和材料科学中具有前景,即用于设计新型独特的膜纳米系统。