Suppr超能文献

利用智能手机传感器进行人类行为认知。

Human behavior cognition using smartphone sensors.

机构信息

Department of Navigation and Positioning, Finnish Geodetic Institute, Masala, Finland.

出版信息

Sensors (Basel). 2013 Jan 24;13(2):1402-24. doi: 10.3390/s130201402.

Abstract

This research focuses on sensing context, modeling human behavior and developing a new architecture for a cognitive phone platform. We combine the latest positioning technologies and phone sensors to capture human movements in natural environments and use the movements to study human behavior. Contexts in this research are abstracted as a Context Pyramid which includes six levels: Raw Sensor Data, Physical Parameter, Features/Patterns, Simple Contextual Descriptors, Activity-Level Descriptors, and Rich Context. To achieve implementation of the Context Pyramid on a cognitive phone, three key technologies are utilized: ubiquitous positioning, motion recognition, and human behavior modeling. Preliminary tests indicate that we have successfully achieved the Activity-Level Descriptors level with our LoMoCo (Location-Motion-Context) model. Location accuracy of the proposed solution is up to 1.9 meters in corridor environments and 3.5 meters in open spaces. Test results also indicate that the motion states are recognized with an accuracy rate up to 92.9% using a Least Square-Support Vector Machine (LS-SVM) classifier.

摘要

本研究专注于感知情境、建模人类行为以及为认知型电话平台开发新架构。我们结合最新的定位技术和电话传感器,在自然环境中捕捉人类运动,并利用运动来研究人类行为。本研究中的情境被抽象为一个情境金字塔,包括六个层次:原始传感器数据、物理参数、特征/模式、简单情境描述符、活动级别描述符和丰富情境。为了在认知型电话上实现情境金字塔,我们利用了三种关键技术:无处不在的定位、运动识别和人类行为建模。初步测试表明,我们已成功利用我们的 LoMoCo(位置-运动-情境)模型实现了活动级别描述符这一层级。所提出解决方案的定位精度在走廊环境中高达 1.9 米,在开放空间中高达 3.5 米。测试结果还表明,使用最小二乘支持向量机(LS-SVM)分类器,运动状态的识别准确率高达 92.9%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d9a/3649388/87a3084b6d32/sensors-13-01402f1.jpg

相似文献

1
Human behavior cognition using smartphone sensors.
Sensors (Basel). 2013 Jan 24;13(2):1402-24. doi: 10.3390/s130201402.
2
Using LS-SVM based motion recognition for smartphone indoor wireless positioning.
Sensors (Basel). 2012;12(5):6155-75. doi: 10.3390/s120506155. Epub 2012 May 10.
3
Understanding energy consumption of sensor enabled applications on mobile phones.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:6885-8. doi: 10.1109/IEMBS.2009.5333609.
4
Hand, belt, pocket or bag: Practical activity tracking with mobile phones.
J Neurosci Methods. 2014 Jul 15;231:22-30. doi: 10.1016/j.jneumeth.2013.09.015. Epub 2013 Oct 1.
5
Miniature low-power inertial sensors: promising technology for implantable motion capture systems.
IEEE Trans Neural Syst Rehabil Eng. 2014 Nov;22(6):1138-47. doi: 10.1109/TNSRE.2014.2324825. Epub 2014 May 16.
6
Mobile Sensing and Support for People With Depression: A Pilot Trial in the Wild.
JMIR Mhealth Uhealth. 2016 Sep 21;4(3):e111. doi: 10.2196/mhealth.5960.
7
Classification Models for Pulmonary Function using Motion Analysis from Phone Sensors.
AMIA Annu Symp Proc. 2017 Feb 10;2016:401-410. eCollection 2016.
8
Human Physical Activity Recognition Using Smartphone Sensors.
Sensors (Basel). 2019 Jan 23;19(3):458. doi: 10.3390/s19030458.
9
Motion Assessment for Accelerometric and Heart Rate Cycling Data Analysis.
Sensors (Basel). 2020 Mar 10;20(5):1523. doi: 10.3390/s20051523.
10
Health care applications based on mobile phone centric smart sensor network.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:6299-302. doi: 10.1109/IEMBS.2007.4353795.

引用本文的文献

1
Smartphone-based activity tracking for spine patients: Current technology and future opportunities.
World Neurosurg X. 2023 Oct 1;21:100238. doi: 10.1016/j.wnsx.2023.100238. eCollection 2024 Jan.
3
A systematic review of smartphone-based human activity recognition methods for health research.
NPJ Digit Med. 2021 Oct 18;4(1):148. doi: 10.1038/s41746-021-00514-4.
5
Comparative analysis of positioning accuracy of Samsung Galaxy smartphones in stationary measurements.
PLoS One. 2019 Apr 18;14(4):e0215562. doi: 10.1371/journal.pone.0215562. eCollection 2019.
6
Monitoring Student Activities with Smartwatches: On the Academic Performance Enhancement.
Sensors (Basel). 2019 Apr 3;19(7):1605. doi: 10.3390/s19071605.
10
Automatic Annotation for Human Activity Recognition in Free Living Using a Smartphone.
Sensors (Basel). 2018 Jul 9;18(7):2203. doi: 10.3390/s18072203.

本文引用的文献

1
A hybrid smartphone indoor positioning solution for mobile LBS.
Sensors (Basel). 2012 Dec 12;12(12):17208-33. doi: 10.3390/s121217208.
2
iParking: an intelligent indoor location-based smartphone parking service.
Sensors (Basel). 2012 Oct 31;12(11):14612-29. doi: 10.3390/s121114612.
3
Using LS-SVM based motion recognition for smartphone indoor wireless positioning.
Sensors (Basel). 2012;12(5):6155-75. doi: 10.3390/s120506155. Epub 2012 May 10.
4
Adaptive momentum-based motion detection approach and its application on handoff in wireless networks.
Sensors (Basel). 2009;9(7):5715-39. doi: 10.3390/s90705715. Epub 2009 Jul 17.
5
Sensing movement: microsensors for body motion measurement.
Sensors (Basel). 2011;11(1):638-60. doi: 10.3390/s110100638. Epub 2011 Jan 10.
6
Identifying and tracking pedestrians based on sensor fusion and motion stability predictions.
Sensors (Basel). 2010;10(9):8028-53. doi: 10.3390/s100908028. Epub 2010 Aug 27.
7
A review of accelerometry-based wearable motion detectors for physical activity monitoring.
Sensors (Basel). 2010;10(8):7772-88. doi: 10.3390/s100807772. Epub 2010 Aug 20.
8
The use of wearable inertial motion sensors in human lower limb biomechanics studies: a systematic review.
Sensors (Basel). 2010;10(12):11556-65. doi: 10.3390/s101211556. Epub 2010 Dec 16.
9
A tutorial on support vector machine-based methods for classification problems in chemometrics.
Anal Chim Acta. 2010 Apr 30;665(2):129-45. doi: 10.1016/j.aca.2010.03.030. Epub 2010 Mar 24.
10
Accelerometry: a technique for quantifying movement patterns during walking.
Gait Posture. 2008 Jul;28(1):1-15. doi: 10.1016/j.gaitpost.2007.10.010. Epub 2008 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验