Suppr超能文献

使用智能手机进行自由活动中的人体活动识别的自动标注。

Automatic Annotation for Human Activity Recognition in Free Living Using a Smartphone.

机构信息

Computer Science Research Institute, Ulster University, Newtownabbey BT370QB, UK.

Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, 97187 Luleå, Sweden.

出版信息

Sensors (Basel). 2018 Jul 9;18(7):2203. doi: 10.3390/s18072203.

Abstract

Data annotation is a time-consuming process posing major limitations to the development of Human Activity Recognition (HAR) systems. The availability of a large amount of labeled data is required for supervised Machine Learning (ML) approaches, especially in the case of online and personalized approaches requiring user specific datasets to be labeled. The availability of such datasets has the potential to help address common problems of smartphone-based HAR, such as inter-person variability. In this work, we present (i) an automatic labeling method facilitating the collection of labeled datasets in free-living conditions using the smartphone, and (ii) we investigate the robustness of common supervised classification approaches under instances of noisy data. We evaluated the results with a dataset consisting of 38 days of manually labeled data collected in free living. The comparison between the manually and the automatically labeled ground truth demonstrated that it was possible to obtain labels automatically with an 80⁻85% average precision rate. Results obtained also show how a supervised approach trained using automatically generated labels achieved an 84% f-score (using Neural Networks and Random Forests); however, results also demonstrated how the presence of label noise could lower the f-score up to 64⁻74% depending on the classification approach (Nearest Centroid and Multi-Class Support Vector Machine).

摘要

数据标注是一个耗时的过程,这对人类活动识别 (HAR) 系统的发展构成了重大限制。监督机器学习 (ML) 方法需要大量的标记数据,特别是在需要对用户特定数据集进行标记的在线和个性化方法的情况下。此类数据集的可用性有可能有助于解决基于智能手机的 HAR 的常见问题,例如人与人之间的可变性。在这项工作中,我们提出了 (i) 一种自动标记方法,该方法使用智能手机在自由生活条件下方便地收集标记数据集,以及 (ii) 我们研究了常见监督分类方法在存在噪声数据情况下的稳健性。我们使用在自由生活中收集的 38 天手动标记数据的数据集评估了结果。手动和自动标记的地面实况之间的比较表明,使用 80-85%的平均精度率可以自动获得标签。获得的结果还表明,使用自动生成的标签训练的监督方法如何实现 84%的 f-score(使用神经网络和随机森林);然而,结果还表明,标签噪声的存在如何根据分类方法(最近中心和多类支持向量机)将 f-score降低到 64-74%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd5b/6068801/e5adb768a379/sensors-18-02203-g001.jpg

相似文献

1
Automatic Annotation for Human Activity Recognition in Free Living Using a Smartphone.
Sensors (Basel). 2018 Jul 9;18(7):2203. doi: 10.3390/s18072203.
2
A Semi-Automatic Annotation Approach for Human Activity Recognition.
Sensors (Basel). 2019 Jan 25;19(3):501. doi: 10.3390/s19030501.
3
Pervasive Sound Sensing: A Weakly Supervised Training Approach.
IEEE Trans Cybern. 2016 Jan;46(1):123-35. doi: 10.1109/TCYB.2015.2396291. Epub 2015 Feb 6.
5
LSTM Networks Using Smartphone Data for Sensor-Based Human Activity Recognition in Smart Homes.
Sensors (Basel). 2021 Feb 26;21(5):1636. doi: 10.3390/s21051636.
6
w-HAR: An Activity Recognition Dataset and Framework Using Low-Power Wearable Devices.
Sensors (Basel). 2020 Sep 18;20(18):5356. doi: 10.3390/s20185356.
8
HIT HAR: Human Image Threshing Machine for Human Activity Recognition Using Deep Learning Models.
Comput Intell Neurosci. 2022 Oct 6;2022:1808990. doi: 10.1155/2022/1808990. eCollection 2022.
9
Exploring Semi-Supervised Methods for Labeling Support in Multimodal Datasets.
Sensors (Basel). 2018 Aug 11;18(8):2639. doi: 10.3390/s18082639.
10
Automatic Annotation of Unlabeled Data from Smartphone-Based Motion and Location Sensors.
Sensors (Basel). 2018 Jul 3;18(7):2134. doi: 10.3390/s18072134.

引用本文的文献

1
GPS-based street-view greenspace exposure and wearable assessed physical activity in a prospective cohort of US women.
Int J Behav Nutr Phys Act. 2025 Jul 6;22(1):92. doi: 10.1186/s12966-025-01795-8.
2
Examining Exposure Differences between Residential and Smartphone Mobility-Based Greenness in a Cohort of the Nurses' Health Study.
Environ Health Perspect. 2023 Nov;131(11):117701. doi: 10.1289/EHP13133. Epub 2023 Nov 14.
3
Minute level smartphone derived exposure to greenness and consumer wearable derived physical activity in a cohort of US women.
Environ Res. 2023 Nov 15;237(Pt 2):116864. doi: 10.1016/j.envres.2023.116864. Epub 2023 Aug 28.
5
A Real-Time Portable IoT System for Telework Tracking.
Front Digit Health. 2021 Jun 10;3:643042. doi: 10.3389/fdgth.2021.643042. eCollection 2021.
6
A systematic review of smartphone-based human activity recognition methods for health research.
NPJ Digit Med. 2021 Oct 18;4(1):148. doi: 10.1038/s41746-021-00514-4.
7
On-Device Deep Personalization for Robust Activity Data Collection.
Sensors (Basel). 2020 Dec 23;21(1):41. doi: 10.3390/s21010041.
8
Human Activity Recognition using Inertial, Physiological and Environmental Sensors: A Comprehensive Survey.
IEEE Access. 2020;8:210816-210836. doi: 10.1109/access.2020.3037715. Epub 2020 Nov 16.
9
Real-Time Human Action Recognition with a Low-Cost RGB Camera and Mobile Robot Platform.
Sensors (Basel). 2020 May 19;20(10):2886. doi: 10.3390/s20102886.

本文引用的文献

1
Rich context information for just-in-time adaptive intervention promoting physical activity.
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:849-852. doi: 10.1109/EMBC.2017.8036957.
2
A Comprehensive Analysis on Wearable Acceleration Sensors in Human Activity Recognition.
Sensors (Basel). 2017 Mar 7;17(3):529. doi: 10.3390/s17030529.
4
Pervasive Sound Sensing: A Weakly Supervised Training Approach.
IEEE Trans Cybern. 2016 Jan;46(1):123-35. doi: 10.1109/TCYB.2015.2396291. Epub 2015 Feb 6.
5
A survey of online activity recognition using mobile phones.
Sensors (Basel). 2015 Jan 19;15(1):2059-85. doi: 10.3390/s150102059.
6
Evaluation of prompted annotation of activity data recorded from a smart phone.
Sensors (Basel). 2014 Aug 27;14(9):15861-79. doi: 10.3390/s140915861.
7
Activity classification based on inertial and barometric pressure sensors at different anatomical locations.
Physiol Meas. 2014 Jul;35(7):1245-63. doi: 10.1088/0967-3334/35/7/1245. Epub 2014 May 22.
8
Human behavior cognition using smartphone sensors.
Sensors (Basel). 2013 Jan 24;13(2):1402-24. doi: 10.3390/s130201402.
9
Weakly Supervised Recognition of Daily Life Activities with Wearable Sensors.
IEEE Trans Pattern Anal Mach Intell. 2011 Dec;33(12):2521-37. doi: 10.1109/TPAMI.2011.36. Epub 2011 Feb 24.
10
Human Activity Recognition and Pattern Discovery.
IEEE Pervasive Comput. 2010;9(1):48. doi: 10.1109/MPRV.2010.7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验