Suppr超能文献

基于 LS-SVM 的运动识别在智能手机室内无线定位中的应用。

Using LS-SVM based motion recognition for smartphone indoor wireless positioning.

机构信息

Department of Navigation and Positioning, Finnish Geodetic Institute, FIN-02431 Masala, Finland.

出版信息

Sensors (Basel). 2012;12(5):6155-75. doi: 10.3390/s120506155. Epub 2012 May 10.

Abstract

The paper presents an indoor navigation solution by combining physical motion recognition with wireless positioning. Twenty-seven simple features are extracted from the built-in accelerometers and magnetometers in a smartphone. Eight common motion states used during indoor navigation are detected by a Least Square-Support Vector Machines (LS-SVM) classification algorithm, e.g., static, standing with hand swinging, normal walking while holding the phone in hand, normal walking with hand swinging, fast walking, U-turning, going up stairs, and going down stairs. The results indicate that the motion states are recognized with an accuracy of up to 95.53% for the test cases employed in this study. A motion recognition assisted wireless positioning approach is applied to determine the position of a mobile user. Field tests show a 1.22 m mean error in "Static Tests" and a 3.53 m in "Stop-Go Tests".

摘要

本文提出了一种将物理运动识别与无线定位相结合的室内导航解决方案。从智能手机内置的加速度计和磁力计中提取了 27 个简单特征。通过最小二乘支持向量机(LS-SVM)分类算法检测到 8 种常见的室内导航运动状态,例如静止、手持摆动站立、手持手机正常行走、手持摆动正常行走、快走、U 型转弯、上下楼梯。结果表明,在所研究的测试案例中,运动状态的识别准确率高达 95.53%。运动识别辅助无线定位方法用于确定移动用户的位置。现场测试表明,“静态测试”的平均误差为 1.22 米,“走走停停测试”的平均误差为 3.53 米。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ce/3386734/c2e927edf43e/sensors-12-06155f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验