Suppr超能文献

调整观察性辅助治疗以估计随机治疗效果。

Adjusting for observational secondary treatments in estimating the effects of randomized treatments.

机构信息

Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109-2029, USA.

出版信息

Biostatistics. 2013 Jul;14(3):491-501. doi: 10.1093/biostatistics/kxs060. Epub 2013 Jan 24.

Abstract

In randomized clinical trials, for example, on cancer patients, it is not uncommon that patients may voluntarily initiate a secondary treatment postrandomization, which needs to be properly adjusted for in estimating the "true" effects of randomized treatments. As an alternative to the approach based on a marginal structural Cox model (MSCM) in Zhang and Wang [(2012). Estimating treatment effects from a randomized trial in the presence of a secondary treatment. Biostatistics 13, 625-636], we propose methods that treat the time to start a secondary treatment as a dependent censoring process, which is handled separately from the usual censoring such as the loss to follow-up. Two estimators are proposed, both based on the idea of inversely weighting by the probability of having not started a secondary treatment yet. The second estimator focuses on improving efficiency of inference by a robust covariate-adjustment that does not require any additional assumptions. The proposed methods are evaluated and compared with the MSCM-based method in terms of bias and variance tradeoff using simulations and application to a cancer clinical trial.

摘要

例如,在癌症患者的随机临床试验中,患者在随机分组后自愿开始二次治疗的情况并不少见,在估计随机治疗的“真实”效果时,需要对此进行适当调整。作为张和王(2012)提出的基于边缘结构 Cox 模型(MSCM)方法的替代方法,我们提出了将二次治疗开始时间视为依赖删失过程的方法,该方法与通常的删失(如随访丢失)分开处理。我们提出了两种估计量,均基于尚未开始二次治疗的概率进行逆加权的思想。第二个估计量侧重于通过稳健的协变量调整来提高推断效率,而无需任何其他假设。通过模拟和对癌症临床试验的应用,评估了所提出的方法,并与基于 MSCM 的方法在偏差和方差权衡方面进行了比较。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验