Suppr超能文献

基于计算机的神经解剖学学习:学习、迁移和记忆的纵向研究。

Computer-based Learning of Neuroanatomy: A Longitudinal Study of Learning, Transfer, and Retention.

作者信息

Chariker Julia H, Naaz Farah, Pani John R

机构信息

Department of Psychological and Brain Sciences, University of Louisville;

出版信息

J Educ Psychol. 2011 Feb 1;103(1):19-31. doi: 10.1037/a0021680.

Abstract

A longitudinal experiment was conducted to evaluate the effectiveness of new methods for learning neuroanatomy with computer-based instruction. Using a 3D graphical model of the human brain, and sections derived from the model, tools for exploring neuroanatomy were developed to encourage adaptive exploration. This is an instructional method which incorporates graphical exploration in the context of repeated testing and feedback. With this approach, 72 participants learned either sectional anatomy alone or whole anatomy followed by sectional anatomy. Sectional anatomy was explored either with perceptually continuous navigation through the sections or with discrete navigation (as in the use of an anatomical atlas). Learning was measured longitudinally to a high performance criterion. Subsequent tests examined transfer of learning to the interpretation of biomedical images and long-term retention. There were several clear results of this study. On initial exposure to neuroanatomy, whole anatomy was learned more efficiently than sectional anatomy. After whole anatomy was mastered, learners demonstrated high levels of transfer of learning to sectional anatomy and from sectional anatomy to the interpretation of complex biomedical images. Learning whole anatomy prior to learning sectional anatomy led to substantially fewer errors overall than learning sectional anatomy alone. Use of continuous or discrete navigation through sectional anatomy made little difference to measured outcomes. Efficient learning, good long-term retention, and successful transfer to the interpretation of biomedical images indicated that computer-based learning using adaptive exploration can be a valuable tool in instruction of neuroanatomy and similar disciplines.

摘要

开展了一项纵向实验,以评估基于计算机教学的神经解剖学学习新方法的有效性。利用人脑的三维图形模型以及从该模型衍生出的切片,开发了用于探索神经解剖学的工具,以鼓励适应性探索。这是一种在反复测试和反馈的背景下融入图形探索的教学方法。采用这种方法,72名参与者要么单独学习断层解剖学,要么先学习整体解剖学再学习断层解剖学。断层解剖学的探索方式要么是通过对切片进行感知上连续的导航,要么是采用离散导航(如使用解剖图谱)。纵向测量学习情况,以达到较高的性能标准。后续测试考察了学习向生物医学图像解读的迁移以及长期记忆情况。这项研究有几个明确的结果。在初次接触神经解剖学时,学习整体解剖学比学习断层解剖学更有效。掌握整体解剖学后,学习者在学习向断层解剖学的迁移以及从断层解剖学向复杂生物医学图像解读的迁移方面表现出较高水平。先学习整体解剖学再学习断层解剖学,总体上比单独学习断层解剖学产生的错误要少得多。通过对断层解剖学采用连续或离散导航,对测量结果影响不大。高效的学习、良好的长期记忆以及成功迁移到生物医学图像解读表明,使用自适应探索的基于计算机的学习可以成为神经解剖学及类似学科教学中的一种有价值的工具。

相似文献

4
10
Immersive virtual reality as a teaching tool for neuroanatomy.沉浸式虚拟现实作为神经解剖学的教学工具。
Int Forum Allergy Rhinol. 2017 Oct;7(10):1006-1013. doi: 10.1002/alr.21986. Epub 2017 Jul 18.

引用本文的文献

本文引用的文献

3
Unsuccessful retrieval attempts enhance subsequent learning.检索尝试失败会增强后续学习。
J Exp Psychol Learn Mem Cogn. 2009 Jul;35(4):989-98. doi: 10.1037/a0015729.
5
The critical importance of retrieval for learning.检索对学习的至关重要性。
Science. 2008 Feb 15;319(5865):966-8. doi: 10.1126/science.1152408.
9
Acquiring new spatial intuitions: learning to reason about rotations.获得新的空间直觉:学习对旋转进行推理。
Cogn Psychol. 2005 Dec;51(4):285-333. doi: 10.1016/j.cogpsych.2005.06.002. Epub 2005 Sep 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验