Suppr超能文献

生态与进化空间动态的计算复杂性

Computational complexity of ecological and evolutionary spatial dynamics.

作者信息

Ibsen-Jensen Rasmus, Chatterjee Krishnendu, Nowak Martin A

机构信息

Institute of Science and Technology Austria, A-3400 Klosterneuburg, Austria;

Program for Evolutionary Dynamics, Departments of Organismic and Evolutionary Biology and Mathematics, Harvard University, Cambridge, MA 02138.

出版信息

Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15636-41. doi: 10.1073/pnas.1511366112. Epub 2015 Dec 7.

Abstract

There are deep, yet largely unexplored, connections between computer science and biology. Both disciplines examine how information proliferates in time and space. Central results in computer science describe the complexity of algorithms that solve certain classes of problems. An algorithm is deemed efficient if it can solve a problem in polynomial time, which means the running time of the algorithm is a polynomial function of the length of the input. There are classes of harder problems for which the fastest possible algorithm requires exponential time. Another criterion is the space requirement of the algorithm. There is a crucial distinction between algorithms that can find a solution, verify a solution, or list several distinct solutions in given time and space. The complexity hierarchy that is generated in this way is the foundation of theoretical computer science. Precise complexity results can be notoriously difficult. The famous question whether polynomial time equals nondeterministic polynomial time (i.e., P = NP) is one of the hardest open problems in computer science and all of mathematics. Here, we consider simple processes of ecological and evolutionary spatial dynamics. The basic question is: What is the probability that a new invader (or a new mutant) will take over a resident population? We derive precise complexity results for a variety of scenarios. We therefore show that some fundamental questions in this area cannot be answered by simple equations (assuming that P is not equal to NP).

摘要

计算机科学与生物学之间存在着深刻但在很大程度上尚未被探索的联系。这两个学科都研究信息如何在时间和空间中扩散。计算机科学的核心成果描述了解决某些类问题的算法的复杂性。如果一个算法能在多项式时间内解决一个问题,那么它就被认为是高效的,这意味着算法的运行时间是输入长度的多项式函数。对于一些更难的问题类别,最快的算法需要指数时间。另一个标准是算法的空间需求。在给定的时间和空间内,能够找到解决方案、验证解决方案或列出几个不同解决方案的算法之间存在着关键区别。以这种方式产生的复杂性层次结构是理论计算机科学的基础。精确的复杂性结果可能非常困难。著名的多项式时间是否等于非确定性多项式时间(即P = NP)问题是计算机科学乃至整个数学领域中最难解决的开放性问题之一。在这里,我们考虑生态和进化空间动态的简单过程。基本问题是:一个新的入侵者(或一个新的突变体)取代一个常驻种群的概率是多少?我们针对各种情况得出了精确的复杂性结果。因此,我们表明该领域的一些基本问题无法通过简单的方程来回答(假设P不等于NP)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验