Suppr超能文献

行波和试平均:大规模皮质信号中单试和平均脑反应的性质。

Traveling waves and trial averaging: the nature of single-trial and averaged brain responses in large-scale cortical signals.

机构信息

Laboratory for Perceptual Dynamics, KU Leuven, Belgium.

出版信息

Neuroimage. 2013 Jun;73:95-112. doi: 10.1016/j.neuroimage.2013.01.016. Epub 2013 Jan 24.

Abstract

Analyzing single trial brain activity remains a challenging problem in the neurosciences. We gain purchase on this problem by focusing on globally synchronous fields in within-trial evoked brain activity, rather than on localized peaks in the trial-averaged evoked response (ER). We analyzed data from three measurement modalities, each with different spatial resolutions: magnetoencephalogram (MEG), electroencephalogram (EEG) and electrocorticogram (ECoG). We first characterized the ER in terms of summation of phase and amplitude components over trials. Both contributed to the ER, as expected, but the ER topography was dominated by the phase component. This means the observed topography of cross-trial phase will not necessarily reflect the phase topography within trials. To assess the organization of within-trial phase, traveling wave (TW) components were quantified by computing the phase gradient. TWs were intermittent but ubiquitous in the within-trial evoked brain activity. At most task-relevant times and frequencies, the within-trial phase topography was described better by a TW than by the trial-average of phase. The trial-average of the TW components also reproduced the topography of the ER; we suggest that the ER topography arises, in large part, as an average over TW behaviors. These findings were consistent across the three measurement modalities. We conclude that, while phase is critical to understanding the topography of event-related activity, the preliminary step of collating cortical signals across trials can obscure the TW components in brain activity and lead to an underestimation of the coherent motion of cortical fields.

摘要

分析单次脑活动仍然是神经科学中的一个具有挑战性的问题。我们通过关注试验内诱发脑活动中的全局同步场,而不是试验平均诱发反应(ER)中的局部峰值,来解决这个问题。我们分析了来自三种测量方式的数据,每种方式都具有不同的空间分辨率:脑磁图(MEG)、脑电图(EEG)和皮层电图(ECoG)。我们首先根据试验中相位和幅度分量的总和来描述 ER。这两者都对 ER 有贡献,正如预期的那样,但 ER 的地形主要由相位分量决定。这意味着观察到的跨试验相位地形不一定反映试验内的相位地形。为了评估试验内相位的组织,通过计算相位梯度来量化行波(TW)分量。TW 是间歇性的,但在试验内诱发的脑活动中普遍存在。在大多数与任务相关的时间和频率下,行波比相位的试验平均值更能描述试验内的相位地形。TW 分量的试验平均值也再现了 ER 的地形;我们认为,ER 地形的出现,在很大程度上是 TW 行为的平均结果。这些发现与三种测量方式都一致。我们得出的结论是,虽然相位对于理解事件相关活动的地形至关重要,但在跨试验整理皮质信号的初步步骤可能会掩盖脑活动中的 TW 分量,并导致对皮质场的相干运动的低估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验