Haziza Simon, Chrapkiewicz Radosław, Zhang Yanping, Kruzhilin Vasily, Li Jane, Li Jizhou, Delamare Geoffroy, Swanson Rachel, Buzsáki György, Kannan Madhuvanthi, Vasan Ganesh, Lin Michael Z, Zeng Hongkui, Daigle Tanya L, Schnitzer Mark J
James H. Clark Center, Stanford University, Stanford, CA 94305, USA.
CNC Program, Stanford University, Stanford, CA 94305, USA.
bioRxiv. 2024 Aug 16:2024.08.15.607428. doi: 10.1101/2024.08.15.607428.
Fluorescent genetically encoded voltage indicators report transmembrane potentials of targeted cell-types. However, voltage-imaging instrumentation has lacked the sensitivity to track spontaneous or evoked high-frequency voltage oscillations in neural populations. Here we describe two complementary TEMPO voltage-sensing technologies that capture neural oscillations up to ~100 Hz. Fiber-optic TEMPO achieves ~10-fold greater sensitivity than prior photometry systems, allows hour-long recordings, and monitors two neuron-classes per fiber-optic probe in freely moving mice. With it, we uncovered cross-frequency-coupled theta- and gamma-range oscillations and characterized excitatory-inhibitory neural dynamics during hippocampal ripples and visual cortical processing. The TEMPO mesoscope images voltage activity in two cell-classes across a ~8-mm-wide field-of-view in head-fixed animals. In awake mice, it revealed sensory-evoked excitatory-inhibitory neural interactions and traveling gamma and 3-7 Hz waves in the visual cortex, and previously unreported propagation directions for hippocampal theta and beta waves. These technologies have widespread applications probing diverse oscillations and neuron-type interactions in healthy and diseased brains.
荧光基因编码电压指示剂可报告目标细胞类型的跨膜电位。然而,电压成像仪器一直缺乏跟踪神经群体中自发或诱发的高频电压振荡的灵敏度。在此,我们描述了两种互补的TEMPO电压传感技术,它们能够捕捉高达约100Hz的神经振荡。光纤TEMPO的灵敏度比之前的光度测量系统高约10倍,可进行长达一小时的记录,并能在自由活动的小鼠中通过每个光纤探针监测两类神经元。利用它,我们发现了交叉频率耦合的theta和gamma范围振荡,并表征了海马涟漪和视觉皮层处理过程中的兴奋性-抑制性神经动力学。TEMPO中观镜可在头部固定动物的约8毫米宽视野内成像两类细胞的电压活动。在清醒小鼠中,它揭示了视觉皮层中感觉诱发的兴奋性-抑制性神经相互作用以及传播的gamma波和3-7Hz波,以及此前未报道的海马theta波和beta波的传播方向。这些技术在探究健康和患病大脑中各种振荡及神经元类型相互作用方面具有广泛应用。