Institute for Mathematical Methods in Economics, Vienna University of Technology, Vienna, Austria.
J Neurosci Methods. 2013 Mar 30;214(1):80-90. doi: 10.1016/j.jneumeth.2012.12.025. Epub 2013 Jan 24.
Granger causality is a useful concept for studying causal relations in networks. However, numerical problems occur when applying the corresponding methodology to high-dimensional time series showing co-movement, e.g. EEG recordings or economic data. In order to deal with these shortcomings, we propose a novel method for the causal analysis of such multivariate time series based on Granger causality and factor models. We present the theoretical background, successfully assess our methodology with the help of simulated data and show a potential application in EEG analysis of epileptic seizures.
格兰杰因果关系是研究网络中因果关系的一个有用概念。然而,当将相应的方法应用于表现出共同运动的高维时间序列时,例如 EEG 记录或经济数据,会出现数值问题。为了解决这些缺点,我们提出了一种基于格兰杰因果关系和因子模型的新方法,用于对这种多变量时间序列进行因果分析。我们介绍了理论背景,借助模拟数据成功地评估了我们的方法,并展示了在癫痫发作的 EEG 分析中的潜在应用。